Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibility of the CO2-AGD process without any bottom water drives, it was first used. The experimental results demonstrated that existence of bottom water drive affected oil recoveries due to pressure support. Oil recovery before gas breakthrough increases proportionally with bottom water drive intensity. The gas breakthrough time recoveries for CO2-AGD1, CO2-AGD2, and CO2-AGD3 runs were 38.68%, 50.70%, and 60.85% of OOIP. The pressure gradient along the physical model decreases as bottom water drive intensity increases. The CO2-AGD approach delayed gas breakout by 72 min. As aquifer strength increases, gas breakthrough is delayed. In the three CO2-AGD runs and after breakthrough occurrence, the injector-producer pressure difference decreased due to the residual heads of oil and water columns above the horizontal well. As long as oil and water exist in the model, the pressure differential will not be zero, and the relative permeability and capillary trapping also control this phenomenon. Finally, it was demonstrated that there is a direct correlation between the strength of the aquifer and the oil recovery factor. The strength of the aquifer positively affects the oil recovery at breakthrough and the ultimate oil recovery.
In this study, the water treatment plants located on the Tigris River within Baghdad city were subjected to qualitative and quantitative assessments. Based on location, the plants from upstream to downstream are Al-Karkh, East Tigris, Al-Karamah, Al-Wathbah, Al-Wehdah, Al-Kadiseyah, Al-Dora, and Al-Rashid. Data from 2009 to 2020 on the turbidity, total dissolved solids, Alkalinity, hardness, chloride, calcium, and temperature were used in the qualitative assessment while data on the treated water production and population served were used in the quantitative assessment. The above Data was acquired from the Municipality of Baghdad. The turbidity was mainly used as a fair gauge to assess the performance of the water treatment plants in Baghda
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
The concentration of radon gas in the samples for drinking water and wells in the same place from selected homes in which wells were built in the Hay-al-Bayaa region of Baghdad was measured, by using a CR-39 nuclear track detector. It turns out that the maximum value of the concentration of radon in drinking water was 3.83 Bq/L, and the lowest was 2.30 Bq/L. As for the estimation of radon gas concentration in well water samples, the highest value was 5.6 Bq/L, while the lowest one was 3.1 Bq/L. In order to assess the committed effective dose received by the public due to the inhalation of radon gas. The highest value of the annual effective dose in drinking water was recorded in Al-Bayaa region, which is equal to 14.30 μSv/y, while th
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA type b
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA t
... Show MoreSurfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl)
... Show MoreThis study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
Chlopheniramine maleate ( CPM ) , is one of the H- receptor antagonist , widely used in allergic diseases ,like skin rash and pruritis .CPM 3%w/w was successfully loaded in 2%w/w sodium alginate (SA) as a gel base , and to be considered as a selected formula .It was found that the diffusion of CPM through the skin of albino rat was increased as the concentration of CPM increased from 2 %w/w sodium alginate , More
... Show More