Image Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IHS), Principal Component Analysis (PCA), pyramid-based techniques, and transforming. Different quality metrics for quantitative analysis of these approaches have been debated.
Between the duality of sound and image, the completeness of the actor’s personality at the director comes to announce the birth of the appropriate theatrical role for that character as the basic and inherent element of the artwork, within his working system in the pattern of vocal behavior as well as motor/signal behavior as he searches for aesthetic and skill proficiency at the same time.
This is done through the viewer’s relationship with the theatrical event, which the director considers as an area of active creative activity in relation to (the work of the actor) through vocal recitation and the signs it broadcasts in order to fulfill the requirements of the dramatic situation and what it requires of a visual vision drawn in t
Language Teaching & Leaning Problems at the Iraqi university level: Image & Reality
This paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreIn this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreRecently, a new secure steganography algorithm has been proposed, namely, the secure Block Permutation Image Steganography (BPIS) algorithm. The new algorithm consists of five main steps, these are: convert the secret message to a binary sequence, divide the binary sequence into blocks, permute each block using a key-based randomly generated permutation, concatenate the permuted blocks forming a permuted binary sequence, and then utilize a plane-based Least-Significant-Bit (LSB) approach to embed the permuted binary sequence into BMP image file format. The performance of algorithm was given a preliminary evaluation through estimating the PSNR (Peak Signal-to-Noise Ratio) of the stego image for limited number of experiments comprised hiding
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show More