Preferred Language
Articles
/
hxbtQYcBVTCNdQwCyz4V
Comparison of Some Mechanical Properties of Silanated SiO2 and Polyester Fiber Composite Incorporation into Heat Cured Acrylic Resin.

Crossref
View Publication
Publication Date
Sat Nov 09 2019
Journal Name
Biochem. Cell. Arch.
EFFECT OF HEAT EXPOSURE AND GINSENG EXTRACT ON BLOOD CELLS COUNT IN BROILER CHIKS

The current study was conducted on 504(Ros-308) broiler chicks reared in Animal farms belong to College of Agriculture, University of Baghdad during the period 28/9/2017- 9/11/2018 to determine the effect of ginseng additive on the performance of chicks. Results of study showed a significant effect (p≤0.05) of exposure period an Red blood cells, 3.56×106ml3 of blood was in bird, which exposure to 2hr at heat shock. In 42 day at age 106 ×38 ml3 of blood can noticed in the blood at birds, which exposure to 2hr in 21-42 days at 3 days of age. No significant effect at ginseng on blood cells. The results showed a significant effect (p≤0.05) of interaction on red blood cells at 21 and 42 days of age and the average cells between these ages

... Show More
Preview PDF
Publication Date
Fri Nov 05 2021
Journal Name
Semiconductor Science And Information Devices
Cladding Modified Fiber Bragg Grating for Copper Ions Detection

This paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Jul 25 2023
Journal Name
Journal Of Optical Communications
Design mode filtering interferometer using etched double clad fiber
Abstract<p>Mode filtering technique is one of the most desired techniques in optical fiber communication systems, especially for multiple input multiple output (MIMO) coherent optical communications that have mode-dependent losses in communication channels. In this work, a special type of optical fiber sensing head was used, where it utilizes DCF13 that is made by Thorlabs and has two numerical apertures (NA’s). One is for core and 1st cladding region, while the 2nd relates the 1st cladding to the 2nd cladding. Etching process using 40 % hydro-fluoric (HF) acid was performed on the DCF13 with variable time in minutes. Investigation of the correlation between the degree of etching and the re</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Refractive Index Scaling in Hollow Core Photonic Crystal Fiber

In this paper, simulation study of the frequency shift of photonic bandgaps due to refractive index scaling using liquids filled hollow-core photonic crystal fibers is presented. Different liquids (distilled water, n-hexane, methanol, ethanol and acetone) are used to fill the cladding of 2 types of hollow core photonic crystal fibers (HC19-1060, HC7-1060). These liquids are used to change the effective index scaling and index contrast of the cladding. The effect of increasing temperature of the liquid (20-100 0C for water and 20-70 0C for other liquids ) infiltrated hollow core fiber on the bandgap width and transmission properties has been computed. The maximum photonic bandgap width at 0.0243 has appeared with filling HC7-1060 PCF with

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 01 2008
Journal Name
Iraqi Journal Of Physics,2008
optical pulse propagation in photonic bandgap fiber Bragg grating

Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fi

... Show More
Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Optical Fiber Biomedical Sensor Based on Surface Plasmon Resonance

Optical fiber biomedical sensor based on surface plasmon resonance for measuring and sensing the concentration and the refractive index of sugar in blood serum is designed and implemented during this work. Performance properties such as signal to noise ratio (SNR), sensitivity, resolution and the figure of merit were evaluated for the fabricated sensor. It was found that the sensitivity of the optical fiber-based SPR sensor with 40 nm thick and 10 mm long Au metal film of the exposed sensing region is 7.5µm/RIU, SNR is 0.697, figure of merit is 87.2 and resolution is 0.00026. The sort of optical fiber utilized in this work is plastic optical fiber with a core diameter of 980 µm, a cladding of 20μm, and a numerical aperture of 0.

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (10)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation and Characterization of a Hierarchically Porous Zeolite-Carbon Composite from Economical Materials and Green Method

Publication Date
Thu Apr 27 2023
Journal Name
Civileng
Numerical Modeling and Analysis of Strengthened Steel–Concrete Composite Beams in Sagging and Hogging Moment Regions

Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the e

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Journal Of Water Process Engineering
Chitosan-vermiculite composite adsorbent: Preparation, characterization, and competitive adsorption of Cu(II) and Cd(II) ions

The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Preparation and Characterization of a Hierarchically Porous Zeolite-Carbon Composite from Economical Materials and Green Method

A hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d

... Show More
View Publication Preview PDF
Crossref (2)
Crossref