Preferred Language
Articles
/
hxb4BIcBVTCNdQwCJS37
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Financing Cost Optimization in Construction Sector: A Review
...Show More Authors

The main aim of this research is to introduce financing cost optimization and different financing alternatives. There are many studies about financing cost optimization. All previous studies considering the cost of financing have many shortcomings, some considered only one source of financing as a credit line without taking into account different financing alternatives. Having only one funding alternative powers, restricts contractors and leads to a very specific financing model. Although it is beneficial for the contractor to use a long-term loan to minimize interest charges and prevent a substantial withdrawal from his credit line, none of the existing financial-based planning models have considered long-term loans in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
MVSCA: Multi-Valued Sequence Covering Array
...Show More Authors

This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 01 1997
Journal Name
Polymer-plastics Technology And Engineering
An Efficient Method for Real Gas Pseudopressure Calculation
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A novel data offloading scheme for QoS optimization in 5G based internet of medical things
...Show More Authors

The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A novel data offloading scheme for QoS optimization in 5G based internet of medical things
...Show More Authors

The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat

... Show More
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends
...Show More Authors

View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Suggested Model for Using a Students Attendance Management Information Systems/ A Case Study In Lebanese French University/ Erbil
...Show More Authors

This study aims to design unified  electronic information system to manage students attendance in Lebanese French university/Erbil, as a system that simplifies the process of entering and counting the students absence, and generate absence reports to expel students who passed  the acceptable limit of being absent, and by that we can replace the traditional way of  using papers to count absence,  with  a complete electronically system for managing students attendance, in a way that makes the results accurate and unchangeable by the students.

            In order to achieve the study's objectives, we designed an information syst

... Show More
View Publication Preview PDF
Crossref