Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreMany organizations today are interesting to implementing lean manufacturing principles that should enable them to eliminating the wastes to reducing a manufacturing lead time. This paper concentrates on increasing the competitive level of the company in globalization markets and improving of the productivity by reducing the manufacturing lead time. This will be by using the main tool of lean manufacturing which is value stream mapping (VSM) to identifying all the activities of manufacturing process (value and non-value added activities) to reducing elimination of wastes (non-value added activities) by converting a manufacturing system to pull instead of push by applying some of pull system strategies a
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreOpportunistic fungal infections due to the immune- compromised status of renal transplant patients are related to high rates of morbidity and mortality regardless of their minor incidence. Delayed in identification of invasive fungal infections (IFIs), will lead to delayed treatment and results in high mortality in those populations. The study aimed to assess the frequency of invasive fungal infection in kidney transplant recipients by conventional and molecular methods. This study included 100 kidney transplant recipients (KTR) (75 males, and 25 females), collected from the Centre of Kidney Diseases and Transplantation in the Medical City of Baghdad. Blood samples were collected during the period from June 2018 to April 2019. Twent
... Show MoreAbstract
This study investigates the mechanical compression properties of tin-lead and lead-free alloy spherical balls, using more than 500 samples to identify statistical variability in the properties in each alloy. Isothermal aging was done to study and compare the aging effect on the microstructure and properties.
The results showed significant elastic and plastic anisotropy of tin phase in lead-free tin based solder and that was compared with simulation using a Crystal Plasticity Finite Element (CPEF) method that has the anisotropy of Sn installed. The results and experiments were in good agreement, indicating the range of values expected with anisotropic properties.
Keywords<
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show More