This study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM images, the BiO NPs were irregular in size and ranged from 23-41 nm. According to the disk diffusion method, the highest inhibitory effect of BiO NPs was observed against MDR P. aeruginosa at 2000 ppm. The MIC and MBC of Bi-O NPs at 2000 ppm and >2000 ppm was observed against 97/200 (47.5%) of MDR P. aeruginosa. Eighty percent and 20% of P. aeruginosa produced strong and moderate-level biofilms, respectively. In the presence of sub-inhibitory concentration (1200 ppm) of Bi-ONPs, 52 (26%) isolates produced strong-level biofilms (p=0.001) and 22 (11%) produced moderate-level biofilm (p=0.029), while 53% of remaining isolates produced weak biofilms. The results exhibited a significant decrease in biofilm formation in the presence of Bi-O NPs. BiO NPs exerted an antibacterial effect that 2000 ppm and had a significant inhibitory effect against P. aeruginosa biofilms
The present study was undertaken in order to investigate the role of gentamicin in the gene expression of toxA in Pseudomonas aeruginosa isolated from cow mastitis. A total of ten P. aeruginosa strains originally isolated from cows infected with mastitis. Agar dilution methodology was performed to determine the minimal inhibitory concentration of gentamicin, all of which developed resistance toward gentamicin. The findings presented here demonstrated that all these strains harboured toxA depending on PCR-based assay. Nonetheless, RT-PCR technique revealed a wide variation in expression of toxA. Moreover, the cultivation of P. aeruginosa in the presence of gentamicin, significantly (P< 0.05), induced the expression of toxA, in addition to th
... Show MoreOwing to high antibacterial resistance of Pseudomonas aeruginosa, it could be considered as the main reason behind the nosocomial infections. P. aeruginosa has a well-known biofilm forming ability. The expression of polysaccharide encoding locus (pelA gene) by P. aeruginosa is essential for this ability. The purpose of the current research was to determine the biofilm formation in P. aeruginosa isolated from clinical samples and to evaluate the role of the selected PelA gene in biofilm formation using PCR method in Iraqi patients. Results revealed that 24 (96%) isolates were found to have the ability to form biofilm that was remarkably related to gentamicin resistance. Moreover, the pelA gene was found in all biofilm-producers. In c
... Show MoreSeven isolates were identified as Pseduomonas aeruginosa from clinical samples. Antibiotic sensitivity test were done to determine their sensitivity to number of antibiotics, the results illustrated all that isolates were resistant to most used antibiotics. The ability of Pseduomonas isolates to produce haemolysin, protease and pyocyanin were detected in this study, all isolates had the ability to produce pyocyanin pigment, hemolysis and protease. The antimicrobial activity of the ethanolic extracts of Thuja orientalis and green tea against P.aeruginosa were investigated. The results showed that both these plant extracts have inhibitory effect against Pseduomonas isolates and it was shown that ethanolic extract of green tea was more efficie
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreHerein, a cost-effective bio approach using extract derived from desert truffles (Tirmania nivea) is utilized to synthesize gold nanoparticles (AuNPs). AuNPs were thoroughly investigated using UV–vis, XRD, SEM, and TEM analyses. It was shown that nanoparticles had an fcc structure with a smooth spherical surface, an average diameter of 9.44 ± 0.26 nm, and an SPR band observed at 548 nm. Investigations were conducted on AuNPs' antibacterial and anti-cancer properties of prostate cancer cells. The findings suggest that AuNPs showed better antibacterial effects against S. aureus compared to E. coli, P. aeruginosa, and K. pneumoniae. AuNPs’ combination with antibiotics demonstrated a synergistic effect with significant antibacterial activi
... Show MorePvcABCD are cluster of genes found in Pseudomonas aeruginosa. The research was designed to examine the relationship between the pvc genes expression and cupB gene, which plays a crucial role in the development of biofilm, and rhlR, which regulates the expression of biofilm-related genes, and to investigate whether the pvc genes form one or two operons. The aims were achieved by employing qRT-PCR technique to measure the gene expression of genes of interest. It was found that out of 25 clinical isolates, 21 isolates were qualified as P.aeruginosa. Amongst, 18(85.7%) were evaluated as biofilm producers, 10 (47.6%), 5 (23.8%), and 3 (14.2%) were evaluated as strong, moderate and weak producers respectively, while, 3 (14.2%) were considered
... Show MoreOne of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in
... Show More