In this thesis, we introduce eight types of topologies on a finite digraphs and state the implication between these topologies. Also we studied some pawlak's concepts and generalization rough set theory, we introduce a new types for approximation rough digraphs depending on supra open digraphs. In addition, we present two various standpoints to define generalized membership relations, and state the implication between it, to classify the digraphs and help for measure exactness and roughness of digraphs. On the other hand, we define several kinds of fuzzy digraphs. We also introduce a topological space, which is induced by reflexive graph and tolerance graphs, such that the graph may be infinite. Furthermore, we offered some properties of this topologies such as connectedness, compactness, Lindelöf and separate properties. Finally, we study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
The research aims to know the availability of supra-cognitive thinking skills in the questions and activities of the computer book for the fifth grade preparatory scientific and literary branches in Iraq for the academic year 2018/2019, as the researcher has prepared a list of supra-cognitive thinking skills included two areas and (6) key skills and (27) A sub - skill, where by the questions and activities of the aforementioned authors were analyzed. The researcher followed the descriptive analytical approach "method of content analysis", and adopted the explicit and implicit unit of analysis, as was verified the validity and stability of the analysis, and the results showed unevenness and imbalance in the distribution of supra-cognitive th
... Show MoreThe purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
Let Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.
In this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
In this paper, we have derived Bayesian estimation for the parameters and reliability function of Perks distribution based on two different loss functions, Lindley’s approximation has been used to obtain those values. It is assumed that the parameter behaves as a random variable have a Gumbell Type P prior with non-informative is used. And after the derivation of mathematical formulas of those estimations, the simulation method was used for comparison depending on mean square error (MSE) values and integrated mean absolute percentage error (IMAPE) values respectively. Among of conclusion that have been reached, it is observed that, the LE-NR estimate introduced the best perform for estimating the parameter λ.
Faintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
In recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony al
... Show MoreThe theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.
Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studie
... Show More