Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks
...Show More Authors
Functionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreIn this paper waste natural material (date seed) and polymer particles(UF) were used for investigation of removal dye of the potassium permanganate. Also study effect some variables such as pH, dye concentration and adsorbent concentration on dye removal. 15 experimental runs were done using the itemized conditions designed established on the Box-Wilson design employed to optimize dye removal. The optimum conditions for the dye removal were found: (pH) 12, (dye con.) 2.38 ppm, (adsorbant con.) 0.0816 gm for date seed with 95.22% removal and for UF (pH) 12, (dye con.) 18 ppm, (adsorbant con.) 0.2235 gm with 91.43%. The value of R-square was 85.47% for Date seed and (88.77%) for UF.
... Show More
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Corrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
The present work describes the adsorption of Ba2+ and Mg2+ions from aqueous solutions by activated alumina in single and binary system using batch adsorption. The effect of different parameters such as amount of alumina, concentration of metal ions, pH of solution, contact time and agitation speed on the adsorption process was studied. The optimum adsorbent dosage was found to be 0.5 g and 1.5 g for removal of Ba2+ and Mg2+, respectively. The optimum pH, contact time and agitation speed, were found to be pH 6, 2h and 300 rpm, respectively, for removal of both metal ions. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models and the data fitted well to both isotherm modes as indicated by higher correlation of deter
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O