Nanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical grains with an average grain size ranging from 39 to 54 nm, depending on the number of pulses. The optical properties of the CeO2 film showed that the optical energy gap of the films decreased from 3.5 to 3 eV as the laser energy density increased from 63.66 to 101.86 J/cm2. The photoluminescence (PL) spectra of the nanostructured CeO2 film reveal that the main emission peaks were observed at 682 nm when excited at 450 nm. The effect of laser energy density on the electrical properties, including carrier concentration, mobility, and current-voltage characteristics under dark and illuminated conditions, was investigated. The CeO2/Si photodetector fabricated at 63.66 J/cm2 showed the highest responsivity of 0.69 A/W at 450 nm, detectivity as high as 1.5 × 1010 Jones at 450 nm, and an external quantum efficiency of 92% when biased to 5 V. The photodynamic response time was measured
The aim of this research work is to evaluate the use of 980 nm diode laser in clotting the blood
in the bone socket after tooth extraction. The objective is to prevent possible clot dislodgement which is
a defect that may lead to possible infection. A number of rabbits were irradiated using 980nm CW mode
diode laser, 0.86W power output for 9s and 15s exposure time. The irradiated groups were studied
histopathologically in comparison with a control group. Results showed that laser photothermal
coagulation was of benefit in minimizing the possibility of the incidence of postoperative complications.
The formation of the clot reduces the possibility of bleeding and infection.
In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
The paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreBackground: Dental implants provide a unique treatment modality for the replacement of a lost dentition .This is accomplished by the insertion of relatively an inert material (a biomaterial) into the soft and hard tissue of the jaws, there by providing support and retention for dental prostheses. Low level laser therapy (LLLT) is an effective tool used to prompt bone repair and remodeling, this has referred to the biostimulation effect of LLLT. The Aim of this study was to evaluate the effects of inflammatory cells on osseointegration of CpTi implant irradiated by low level laser. Materials and Methods: thirty two adult New Zealand white rabbits, received titanium implants were inserted in the tibia. The right side is considered as experime
... Show MorePolymeric microsphere devices occupy a wide range in the field of controlled drug delivery. Subcutaneous injectable preparations of Poly(Lactide-co-Glycolide) (PLGA) microsphere of Daptomycine were prepared by solvent extraction/evaporation technique using different copolymers ratio and molecular weights. Four formulations were prepared (F1-F4) and characterized in term of particle size, surface morphology, bulk density and porosity in addition to the drug content. The effects of the above parameters on the in-vitro release study were evaluated. These formulas were evaluated also for their in-vivo release profile using rat (as an animal model) and
... Show MoreIn this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.
This paper includes the synthesis of some new nucleoside analogues starting with 2-substituted benzimidazole derivative (7-9), that synthesized by condensation of O-phenylenediamine with p-chloro benzaldehyde and two substituted benzoic acid , which on nucleophilic substitution with propargyl bromide gave a new N-substituted compounds (10-12). D-Fructose and D-galactose were chosen as a sugar moiety which were protected, brominated and azotated to give azido sugars (5) and (6), then they were subjected to 1,3-dipolar cycloaddition reaction with N-substuted compounds afforded bloked nucleoside analoges (13-16), which after hydrolysis gave our target the free nucleoside analogues (17-20). All prepared compounds were identified by FT-IR
... Show More5-(mercapto-1,3,4-thiadiazole-2yl)α,α-(diphenyl)methanol have been synthesized by ring closer of potassium xanthate[which have been prepared by reaction of benzilic acid hydrazide with carbon disulphide in potassium hydroxide] using conc.sulphuric acid at (0-5)°C scheme(I). Their characterization was carried out from T.L.C, M.P, FT.IR and 1H-NMR.