In this paper, a new 5G Passive Optical Network (5G-PON) employing all-optical orthogonal frequency division multiplexing (AO-OFDM) is proposed in hybrid bidirectional standard single mode fiber (SSMF)/free space optical (FSO). Additionally, an optical frequency generator (OFG) source is utilized. The proposed model is simulated using VPI photonics software. Analytical modeling and simulations have been conducted for a new approach to generate OFG by cascaded two-frequency modulators and one electro-absorption modulator. A sinusoidal RF signal source is utilized to drive all these modulators. The results reveal that 64 optical multiplexed carriers with a frequency spacing of 30 GHz are generated. These optical carriers have power variations of dB. Moreover, the center wavelength of the generated OFG can be tuned from 1300 nm for upstream transmission to 1577 nm for downstream transmission in the proposed 5G-PON. The proposed network achieves 960 Gbps and 10 Gbps for the downstream and upstream directions, respectively, under different turbulence effects. Furthermore, when 32 AO-OFDM channels are used, the simulation results show that the proposed model can achieve a SSMF length and FSO propagation ranges of 20 km and 2 km, respectively, with bit error rate (BER) ( ).
A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
in this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
In this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe
Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO
... Show MoreLower extremity exoskeletons can assist with performing particular functions such as gait assistance, and physical therapy support for subjects who have lost the ability to walk. This paper presents the analysis and evaluation of lightweight and adjustable two degrees of freedom, quasi-passive lower limb device to improve gait rehabilitation. The exoskeleton consists of a high torque DC motor mounted on a metal plate above the hip joint, and a link that transmits assistance torque from the motor to the thigh. The knee joint is passively actuated by spring installed parallel with the joint. The action of the passive component (spring) is combined with mechanical output of the motor to provide a good control on the designed exoskeleton whi
... Show MoreCadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.