In this paper, a new 5G Passive Optical Network (5G-PON) employing all-optical orthogonal frequency division multiplexing (AO-OFDM) is proposed in hybrid bidirectional standard single mode fiber (SSMF)/free space optical (FSO). Additionally, an optical frequency generator (OFG) source is utilized. The proposed model is simulated using VPI photonics software. Analytical modeling and simulations have been conducted for a new approach to generate OFG by cascaded two-frequency modulators and one electro-absorption modulator. A sinusoidal RF signal source is utilized to drive all these modulators. The results reveal that 64 optical multiplexed carriers with a frequency spacing of 30 GHz are generated. These optical carriers have power variations of dB. Moreover, the center wavelength of the generated OFG can be tuned from 1300 nm for upstream transmission to 1577 nm for downstream transmission in the proposed 5G-PON. The proposed network achieves 960 Gbps and 10 Gbps for the downstream and upstream directions, respectively, under different turbulence effects. Furthermore, when 32 AO-OFDM channels are used, the simulation results show that the proposed model can achieve a SSMF length and FSO propagation ranges of 20 km and 2 km, respectively, with bit error rate (BER) ( ).
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The effect of α-particle irradiation on the optical absorption in nuclear track detectors (LR115) has been studied. These detectors have been irradiated with different doses. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy, that irradiation results in shifting the peaks of the optical absorption. The values of Urbach energy have been calculated from the position of steady-state optical band gap energy, for a standard sample which was unirradiated with indirect influence, has been found 1.9 eV whereas its value after irradiation 1.98 eV. In case of the direct influence, it is found to be, respectively, before irradiation 1.98 eV and after irradiation 2.05 eV. From these results, we can
... Show Morecurrent research Cares about study patterns of optical and aesthetic values in the halls of occasions (weddings) because of their importance in providing an atmosphere of joy. The problem was through the study of light and its impact on the receiver and found a researcher that interior spaces allocated to the halls inappropriate in terms of functional and aesthetic so necessitated the need to study this phenomenon in order to be addressed through the study of light and its impact on the users of those spaces where research aims to current detection properties patterns optical in the internal spaces of the halls and identify some of the aesthetic values of the lighting for the interior spaces.The search consists of four chapters, the firs
... Show MoreIn this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
Optical fibers were produced by the system manufactured for this purpose and then, PMMA core of polymer optical fiber (POF) and PMMA doped Rhodamine B (RhB) claddings were studied and determine their UV–vis absorption and emission. The study adopted the mechanism of lateral pumping of the product polymer optical fiber by using laser with 404 nm excitation to study optical specifications of the factory fiber. It was noted that there were blue shift in maximum peak wavelength in absorption and fluorescence from the doped polymer before use it as clad. The obtained results by using the doping polymer with (RhB) for clad the amplified spontaneous emission ASE seems in fluorescence study. The side excitation shows that there were no an over
... Show MoreVisible Light Communication (VLC) has emerged as a powerful technique for wireless communication systems. Providing high data rate and increasing capacity are the major problems in VLC. Recent evidence suggests that Multiple Input Multiple Output (MIMO) technique can offers improved data rates and increased link range. This paper describes the design and implementation of visible light communication system in indoor environment exploring the benefits of MIMO. The specific objective of this research was to implement a 4× 4 Multiple Input (LEDs) Multiple Output (photodetectors)-VLC communication system, where a 16 white power LEDs in four arrays are setting up at transmitter and four RX modules are setting up at receiver side without the nee
... Show MoreSolid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the refl
... Show MoreThe real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.
Ag2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show More