The study was conducted in the Tigris River in Baghdad during May 2021 until March 2022 to follow the impact of climate change, rising temperatures, and the presence of pollutants on the dynamics of phytoplankton and some physicochemical variables from four sites. The results showed that the climatic conditions during different seasons, in addition to the nature of the sampling sites, have a clear and significant impact on the studied traits and, in turn, affect the phytoplankton community. The highest average temperature (30.67 ˚C) was recorded; the pH values ranged between 8.70 & 6.75; the electrical conductivity (1208.18-770.11 µS/cm ) and the total dissolved solids (TDS) (778.95- 439.49 mg/L) were evaluated. Upon measuring the total hardness and turbidity, a significant increase was detected at the third site during winter, amounting to 67.26 NUT and 775.46mg/ L, respectively. The dissolved oxygen concentration (DO) was recorded at the fourth site during winter (10.08- 4.67 mg/L), while the BOD ranges were 4.87- 2.51mg/ L. A benefit in the average values of plant nutrients was detected at the third site affected by the waste liquid disposal area of the Medical City Hospital Complex compared to the nutrient concentration at the other three sites, which was 3.43, 4.87, 13.50 & 409.00mg/ L for NO3 PO4 and SiO2 and S04, respectively, The study was able to classify 161 species of phytoplankton belonging to 69 genus, the largest percentage of which was Baciliariophyceae (42%), followed by Cyanophyceae (27%), Chlorophyceae (24%), Euglenophyceae (4%) and 1% for Chrysophyceae, Xanthphyceae, and Cryptophyceae. Recent years have witnessed severe climatic conditions affecting various environmental factors in the study area. The phytoplankton community has been vulnerable to their impact altering the physical and chemical properties of the river water. This indicates that the aquatic environment responds to climatic conditions.
Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying
... Show MoreThis work included synthesis of several new polymers of polyacryloyl chloride in two steps . The first step the included the reaction of N-( sub. or un sub. benzoyl and sub. or un sub. acetyl ) amidyl sub. 2,6- diamino -4-methyl-1,3,5-triazine (1-5) by condensation of many substituted acid chlorides with 2,6- diamino -4-methyl-1,3,5-triazine . While the second step included the reaction of polyacryloyl chloride with the produced compounds (1-5) in step (1) in the presence amount triethyl amine (Et3N) to obtain new polyimides (6-10). The prepared compounds were characterized by UV. , FT-IR, and some of them by 1H-NMR and 13C- NMR spectroscopy.
Arrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.
Research objective to identify the degree of environmental sustainability values of the student-teacher in the College of Education for Pure Sciences. In this research the methodology of relational descriptive research was adopted, and the research sample consisted of (116) students from the College of Education for Pure Sciences / Ibn Al-Haytham / University of Baghdad From the Department of Chemistry (fourth stage), that is, 54% of the research community were randomly selected. The research tool was prepared, represented by a measure of environmental sustainability values of (20) items, the results of the research showed: The poor degree of environmental sustainability values. The Statistical Portfolio of Social Sciences (SPSS) was adopte
... Show MoreDoppler broadening of the 511 keV positron annihilation ??? ? was used to estimate the concentration of defects ?? different deformation levels of pure alnminum samples. These samples were compressed at room temperature to 15, 22, 28, 38,40, and 75 % thickness reduction. The two-state ^sitron-trapping model has been employed. 'I he s and w lineshape parameters were measured using high-resolution gamma spectrometer with high pure germanium detector of 2.1 keV resolution at 1.33 MeV of 60Co. The change of defects concentration (Co) with the deformation level (e) is found to obey an empirical formula of the form Cd - A £ B where A and ? are positive constants that depend mainly on the deformation procedure and the temperature at which the def
... Show MoreThe topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
A simple, rapid, accurate and sensitive spectrophotometric method has been developed for the determing carbamate pesticides in both pure and water samples. The method is appropriate for the determination of carbofuran in the presence of other ingredients that are usually available in dosage forms. The effect of organic solvents on the spectrophotometric properties of the azo dye and the structure of the resulting product have also been worked out and it is found to be 1:1 benzidine :carbofuran. The method can be successfully applied to determination of carbofuran in water samples. The method is based on diazotization of Benzidine (4, 4 – diamino biphenyl) with sodium nitrite and hydrochloric acid followed by coupling with carbofuran
... Show More