The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave.
This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected
In this paper, some relations between the flows and the Enveloping Semi-group were studied. It allows to associate some properties on the topological compactification to any pointed flows. These relations enable us to study a number of the properties of the principles of flows corresponding with using algebric properties. Also in this paper proofs to some theorems of these relations are given.
Transport layer is responsible for delivering data to the appropriate application process on the host computers. The two most popular transport layer protocols are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is considered one of the most important protocols in the Internet. UDP is a minimal message-oriented Transport Layer protocol. In this paper we have compared the performance of TCP and UDP on the wired network. Network Simulator (NS2) has been used for performance Comparison since it is preferred by the networking research community. Constant bit rate (CBR) traffic used for both TCP and UDP protocols.
In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show MoreThree-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreBackground: The bond strength of root canal sealers to dentin and gutta-percha seems to be an important property for maintaining the stability of root canal filling, which potentially influences both leakage and root strength. The objective of this, in vitro, study was to evaluate the shear bond strength of three different endodontic sealers (Gutta-Flow, AH Plus, Apexit Plus) to dentin, in the presence and absence of the smear layer and gutta percha. Material and Methods: After slicing off the occlusal 2mm of 60 extracted human maxillary premolar teeth, the exposed dentin served as the tested surfaces; the teeth were fixed with cold cure acrylic, and were divided into two groups according to the smear layer presence, group A without smear
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Transient drop in the heart beat or transient heart block (AVB) may be consider the main cause of syncope or presyncope inpatients with bifascicular block and syncope According to the Guidelines for cardiac pacing pacemaker consider part of treatment. Aims of our study were to evaluate whether there is role for EPS in patients BFB and to evaluate the symptoms after pacing. 42 patients were enrolled in this study, with mean age value (63.4± 12.2years), suffer from interventricular conductive defect and syncope; patients underwent EPS on admission time, and pacemaker implantation accordingly and programmed follow up for the device in the last four years. Our patients were 25 (59.5%) male and 17 (40.5%)female, all of them with syncope o
... Show More