The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show MoreThe performance quality and searching speed of Block Matching (BM) algorithm are affected by shapes and sizes of the search patterns used in the algorithm. In this paper, Kite Cross Hexagonal Search (KCHS) is proposed. This algorithm uses different search patterns (kite, cross, and hexagonal) to search for the best Motion Vector (MV). In first step, KCHS uses cross search pattern. In second step, it uses one of kite search patterns (up, down, left, or right depending on the first step). In subsequent steps, it uses large/small Hexagonal Search (HS) patterns. This new algorithm is compared with several known fast block matching algorithms. Comparisons are based on search points and Peak Signal to Noise Ratio (PSNR). According to resul
... Show MoreThe aim of the research is to identify the relationship between health anxiety associated with Coronavirus (Covid 19) and its relationship to health behavior among Baghdad University employees, as well as to identify the differences in health anxiety and health behavior according to the variables (gender, occupation, and age). To achieve the objectives of the research, a scale was designed to measure the health anxiety in addition to the adoption of the health behavior scale prepared by (Renner & Schwarzer, 2005). The two scales were applied to a sample of (277) academics and (206) employees, while the number of students was (667). The sample was chosen by electronic application from a number of colleges at Al-Jadiriyah Complex. Afte
... Show MoreCoronavirus disease (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus, SARS-CoV-2. Infection with SARS-CoV-2 primarily occurs through binding to angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in various anatomical sites, including the nasopharynx, lungs, cardiovascular system, and gastrointestinal and genitourinary tracts. This study aimed to nurses' knowledge and protective health behaviors about prevention of covid-19 pandemic complications.
A descriptive design stud
Many studies of the relationship between COVID-19 and different factors have been conducted since the beginning of the corona pandemic. The relationship between COVID-19 and different biomarkers including ABO blood groups, D-dimer, Ferritin and CRP, was examined. Six hundred (600) patients, were included in this trial among them, 324 (56%) females and the rest 276 (46%) were males. The frequencies of blood types A, B, AB, and O were 25.33, 38.00, 31.33, and 5.33%, respectively, in the case group. Association analysis between the ABO blood group and D-dimer, Ferritin and CRP of COVID-19 patients indicated that there was a statistically significant difference for Ferritin (P≤0.01), but no-significant differences for both D-dimer and CRP.
... Show MoreSusceptibility to the pandemic coronavirus disease 2019 (COVID-19) has recently been associated with ABO blood groups in patients of different ethnicities. This study sought to understand the genetic association of this polymorphic system with risk of disease in Iraqi patients. Two outcomes of COVID-19, recovery and death, were also explored. ABO blood groups were determined in 300 hospitalized COVID-19 Iraqi patients (159 under therapy, 104 recovered, and 37 deceased) and 595 healthy blood donors. The detection kit for 2019 novel coronavirus (2019-nCoV) RNA (PCR-Fluorescence Probing) was used in the diagnosis of disease.
Background: COVID-19 is an ongoing disease that caused, and still causes, many challenges for humanity. In fact, COVID-19 death cases reached more than 4.5 million by the end of August 2021, although an improvement in the medical treatments and pharmaceutical protocols was obtained, and many vaccines were released. Objective: To, statistically, analyze the data of COVID-19 patients at Alshifaa Healthcare Center (Baghdad, Iraq). Methods: In this work, a statistical analysis was conducted on data included the total number, positive cases, and negative cases of people tested for COVID-19 at the Alshifaa Healthcare Center/Baghdad for the period 1 September – 31 December 2020. The number of people who got the test was 1080, where 424 w
... Show MoreVaccination is a vital cornerstone of public health, which has saved countless lives throughout history. Therefore, achieving high vaccination uptake rates is essential for successful vaccination programs. Unfortunately, vaccine uptake has been hindered by deferent factors and challenges. The objective of this study is to assess COVID-19 vaccine uptake and associated factors among the general population.
This study is a descriptive cross-sectional study conducted in Basmaia city, Baghdad from June to October 2022. Data were collected through a semi-structured questionnaire using multi-stag