The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, recognition and understanding and efficient processing of large amounts of video data. This research proposes a novel unified approach to lossy and lossless video frame compression, which is beneficial for the autonomous processing and enhanced representation of high-resolution video data in various domains. The proposed fast block matching motion estimation technique, namely mean predictive block matching, is based on the principle that general motion in any video frame is usually coherent. This coherent nature of the video frames dictates a high probability of a macroblock having the same direction of motion as the macroblocks surrounding it. The technique employs the partial distortion elimination algorithm to condense the exploration time, where partial summation of the matching distortion between the current macroblock and its contender ones will be used, when the matching distortion surpasses the current lowest error. Experimental results demonstrate the superiority of the proposed approach over state-of-the-art techniques, including the four step search, three step search, diamond search, and new three step search.
The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show MoreMRY *Khalid Sh. Sharhan, *Naseer Shukur Hussein, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MoreAbstract
In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas
... Show MoreIntroduction The Hybrid Gamma Camera (HGC) is being developed to enhance the localisation of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. Purpose To assess the capability of the HGC, a lymph-node-contrast (LNC) phantom was constructed for an evaluative study simulating medical scenarios of varying radioactivity concentration and SLN size. Materials and methods The phantom was constructed using two methyl methacrylate PMMA plates (8 mm thick). The SLNs were simulated by drilling circular wells of diameters ranging between 10 mm and 2.5 mm (16 wells in total) in one plate. These simulated SLNs were placed underneath scattering material with thicknesses ranging between 5 mm
... Show More