Objective: The present work was undertaken to investigate the impact of sub inhibitory concentration of gentamicin on hla gene expression in methicillin resistant Staphylococcus aureus isolates. Methods: The bacterial isolates used in this study represent 33 MRSA strains, previously isolated form patients visiting several hospitals in Baghdad. Gentamicin, vancomycin, and oxacillin MIC were determined using broth dilution method. Microtiter plate method was adopted to investigate the biofilm forming capacity. Alpha hemolysin was detected by culturing MRSA isolates on rabbit blood agar. Furthermore, hla gene was detected in MRSA isolates using conventional PCR technique; while, qRT-PCR method was performed to assay the hla expression in planktonic and biofilm cells in presence and absence of gentamicin. Results: the present results demonstrated that 12 (36.36%) isolates were gentamicin-resistant; whereas, all isolates were resistant to oxacillin and sensitive to vancomycin. Out of 33 MRSA, 3, 23, and 7 isolates formed a weak, moderate, and strong biofilm, respectively. Phenotypically, 30 isolates produced alpha hemolysin on rabbit blood agar plates; nevertheless, hla gene was located in 29 isolates. Of considerable interest, the addition of gentamicin significantly (P < 0.05) reduced the hemolysis activity; while, insignificant fold change (less than two) of hla gene was observed in all tested isolates in the presence of sub MIC of gentamicin (16 µg/ml). Conclusion: gentamicin upregulated the hla gene expression in biofilm cells; hitherto, this increment was isolate specific.
Staphylococcus aureus and Pseudomonas aeruginosa are the major globally distributed pathogens, which causes chronic and recalcitrant infections due to their capacity to produce biofilms in large part. Biofilm production represents a survival strategy in these species, allowing them to endure environmental stress by altering their gene expression to match their own survival needs. In this study, we co-cultured different clinical isolates of S. aureus and P. aeruginosa as mono- and mixed-species biofilms in a full-strength Brain Heart Infusion Broth (BHI) and in a 1000-fold diluted Brain Heart Infusion Broth (BHI/1000) using Microtiter plate assay and determination of colony-forming units. Furthermore, the effect of starvation stress on the e
... Show More
Staphylococcus aureus is a common pathogenic agent due to its ability to cause various types of infections, ranging from mild skin infections to sever systemic diseases. One of the most virulence factors of this bacterium is its ability to from biofilms on solid surfaces by anchoring the planktonic cells and by producing a protective layer of extra polymeric substances. Biofilm formation is controlled through many genes. The most important ones are icaA and icaD. Dentures are prosthetic devices that are made of different materials to replace lost teeth. The aim of this study is to examine the ability of different types of denture materials to support the biofilm formation of S. aureus at phenotypic level by detecting ba
... Show MoreThe aim of this research is to evaluate the effect of glucose and sodium chloride on biofilm formation by bacteria causing wound infection. For this purpose, 1% and 2% concentration of each of glucose and sodium chloride were used to test the biofilm formation potential of Staphylococcus aureus and Pseudomonas aeruginosa, which were the most common abundant bacteria that cause infection by biofilm. Each of the concentrations was kept in contact with the pathogenic bacteria for 24 hours. After the period of incubation, the concentration of 1% of glucose enhanced moderate biofilm formation capacity for (66% and 80%) on both bacteria respectively. The concentration of 2% glucose, on the other hand, led to a weak biofilm fo
... Show MoreThis prospective study investigates the prevalence of methicillin-resistant S.aureus (MRSA)
in burn unit of Al-Kindy Iraqi hospital, their susceptibility to antibiotics and bactericidal effect of near
infrared light from high powered 1064nm Nd: YAG laser and green light 532nm from SHG Nd: YAG laser
using various energy densities on these bacteria. Twenty four clinical isolates of S.aureus out of sixty
four examined patients with sever burn ulcers.MRSA was associated with 50% of S.aureus infections
.Results of antimicrobial susceptibility revealed that MRSA were multidrug resistant. After laser treatment
of non MRSA with Nd:YAG with wavelength of 1.064nm, 4mm beam diameter, energy density of
0.636 kh/cm2 and 180sec ex
P. aeruginosa is a famous bacterium that causes several diseases and has a high ability to be a multidrug resistant organism that is linked with the formation of biofilm. This study aimed to investigate tssC1 gene role in the resistance of different antibiotics in the presence of biofilm. We constructed biofilm for the isolates under the study and showed the effect of different antibiotics on biofilm formation and maturation. The presence of the gene was detected through achieving PCR reaction. Finally, tssC1 gene variation was determined through sequencing and aligning the sequencing products. The results showed that most of the isolates (80%) formed biofilm that played a role in the resistance of different antibiotics which could
... Show MoreBackground: Insertion sequence is a short DNA sequence encode for proteins implicated in the transposition activity. Transposase catalyzes the enzymatic reaction allowing the insertion sequence to +9*lo2 move. ;qqa;.
Objective: To study the sequencing of transposase gene, tnp, IS1216V of S. aureus isolated from food and then compared with that documented in National Center for Biotechnology Information (NCBI).
Methods: Food samples of animal
... Show MoreIn order to investigate the presence of methicillin or multidrug resistant Staphylococcus aureus in food-chain especially Cows raw milk and white raw soft cheese and its whey, a total of 30 samples were collected randomly from different markets in Baghdad Province during December 2012 till February 2013, in which samples were analyzed by a standard isolation protocols of food microbiology with some modification processing by new, modern and rapid technology tools such as chromogenic medium Baird-Parker agar, Electronic RapIDTM Staph Plus Code Compendium Panel System (ERIC®) Dryspot Staphytect Plus and Penicillin Binding Protein (PBP2') Plus assays; as well as, studying the susceptibility of isolates to different selected antibiotics. The r
... Show More