For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe earthquake. The current numerical model takes into account the material non-linearity and the non-linearity of pile-to-surrounded soil contact surfaces. A lateral ground acceleration was adapted to simulate the seismic effects. This research emphasizes modeling the 1 g model by adapting MIDAS GTS NX software. This will, in turn, present the main findings from a single pile model under a combined static and dynamic load. Consequently, the main results were first validated and then used for further deep investigations. The numerical results predicted a slightly higher displacement in the horizontal and vertical directions than the 1 g shaking table. The shear stress–shear strain relationship was predicted. Positive frictional resistance for the closed-ended pile was captured during the first 5 s when low values of acceleration were applied and, consequently, the pile resistance decreased and became negative. Internal and external frictional resistance was captured for the open-ended pipe pile. Overall, frictional resistance values were decreased with time until they reached the last time step with a minimum value. As a result, the evaluation of the current study can be used as a guide for analysis and preliminary design in engineering practice.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MoreGenus Eucalyptus belongs to the family Myrtaceae that consists of more than 700 species, various hybrids and varieties. The majorly distributed species that are grown in Iraq are Eucalyptus alba, E. macarthurii, E. siderophloia and E. camaldulensis, E. tereticornis, E. vicina. Most Eucalyptus species are highly dependent on rainfall, and this is challenged by climatic changes owing to global warming making it difficult to effectively match the availability of mature trees and the market demand, especially for use as power transmission poles. With the widespread availability of other naturally occurring Eucalyptus species, it has become important to determine the genetic diversity and to analyze the phenotypic tra
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show MoreIn this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.
n this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3,
... Show MoreThe present work involved preparation of new hetro cyclic polyacrylamides (1-9) using reaction of polyacryloyl chloride with 2-aminobenzothiazole which prepeard by thiocyanogen method in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating. The structure confirmation of polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy.Other physical properties including softening and melting points, and solubility of the polymers were also measured.
by in situ polymerization of aniline monomer, conducting polyaniline (PANI) nanocomposites containing various concentrations of carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNT) were synthesized. The morphological and electrical properties of pure PANI and PANI /MWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) respectively. FTIR spectra shows that the carboxylic acid groups formed at the both ends of the sidewalls of the MWCNTs. The aniline monomers were polymerized on the surface of MWCNTs, depending on the -* electron interaction between aniline monomers and MWCNTs and hydrogen bonding into interaction between t
... Show MoreProbiotics are live microbes that give many health benefits to human beings and animals, the most studied and commonly used probiotics are Gram-positive bacteria; lactobacilli and bifidobacteria. At nowadays, Lactobacillus spp. constitute more than two-thirds of the total numbers of probiotic species. The present study aimed to characterize Lactobacillus that locally isolated from human mouth and feces as probiotics. A total of three Lactobacillus isolates; Lactobacillus fermentum Lb2, Lactobacillus rhamnosus Lb9, and Lactobacillus paracasei Lb10 were investigated in respect to acid and bile salts tolerance, antibiotics susceptibility, and cell surface hydrophobicity in vitro using bacterial adhesion to hydrocarbons method. In compa
... Show MoreA study of characteristics of the lubricant oils and the physical properties is essential to know the quality of lubricant oils. The parameters that lead to classify oils have been studied in this research. Three types of multi-grades lubricant oils were applied under changing temperatures from 25 oC to 78oC to estimate the physical properties and mixture compositions. Kinematic viscosity, viscosity gravity constant and paraffin (P), naphthenes (N) and aromatics (A) (PNA) analysis are used to predict the composition of lubricants oil. Kinematic viscosity gives good behaviors and the oxidation stability for each lubricant oils. PNA analysis predicted fractions of paraffin (XP), naphthenes (XN),
... Show More