For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe earthquake. The current numerical model takes into account the material non-linearity and the non-linearity of pile-to-surrounded soil contact surfaces. A lateral ground acceleration was adapted to simulate the seismic effects. This research emphasizes modeling the 1 g model by adapting MIDAS GTS NX software. This will, in turn, present the main findings from a single pile model under a combined static and dynamic load. Consequently, the main results were first validated and then used for further deep investigations. The numerical results predicted a slightly higher displacement in the horizontal and vertical directions than the 1 g shaking table. The shear stress–shear strain relationship was predicted. Positive frictional resistance for the closed-ended pile was captured during the first 5 s when low values of acceleration were applied and, consequently, the pile resistance decreased and became negative. Internal and external frictional resistance was captured for the open-ended pipe pile. Overall, frictional resistance values were decreased with time until they reached the last time step with a minimum value. As a result, the evaluation of the current study can be used as a guide for analysis and preliminary design in engineering practice.
In the era of the digital economy, public organizations need to consolidation the capabilities of entrepreneurial alertness to reduce the risks of sudden transformations and changes, and to find effective mechanisms to discover and invest in environmental opportunities proactively, as this concern has become a knowledge gap in public sector institutions, the current research aims to identify the role of digital competence in influencing on entrepreneurial alertness in the Central Bank of Iraq (CBI), the descriptive analytical approach was used as a research method to describe and analyze the main research variables. digital competence as an explanatory variable includes three dimensions: digital infrastructure, digital integration, and d
... Show MoreExperimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
This study aimed to obtain an isolate of a mold that has well characteristic for production of citric acid from raw materials available locally by solid-state fermentation and determination of the optimum conditions for production .Fourteen mold isolates producing acid were obtained from different sources, involved decayed fruits and soils. These isolates were subjected to initial qualitative screening followed by secondary quantitative screening In secondary screening a method combined between the submerged fermentation and solid-state fermentation was followed using a piece of sponge saturated by nutrients required for growth and production of acid. It was found that the isolate of A7 was the highest producer for citric acid tha
... Show MoreThis paper presents the first data for bremsstrahlung buildup factor (BBUF) produced by the complete absorption of Y-91 beta particles in different materials via the Monte Carlo simulation method. The bremsstrahlung buildup factors were computed for different thicknesses of water, concrete, aluminum, tin and lead. A single relation between the bremsstrahlung buildup factor BBUF with both the atomic number Z and thickness X of the shielding material has been suggested.
This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreIn current study, the dye from flowers petals of Strelitzia reginae used for the first time to prepare natural photosensitizer for DSSC fabrication. Among five different solvents used to extract the natural dye from S. reginae flowers, the ethanol extract of anthocyanin dye revealed higher absorption spectrum of 0.757a.u. at wavelength of 454nm. A major effect of temperature was studied to increase the extraction yield. The results show that the optimal temperature was 70 °C and there was a sharp decrease of dye concentration from 0.827 at temperature of 70 °C to 0.521 at temperature of 90°C. The extract solution of flowers of S. reginae showed higher co
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
In this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show More