For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe earthquake. The current numerical model takes into account the material non-linearity and the non-linearity of pile-to-surrounded soil contact surfaces. A lateral ground acceleration was adapted to simulate the seismic effects. This research emphasizes modeling the 1 g model by adapting MIDAS GTS NX software. This will, in turn, present the main findings from a single pile model under a combined static and dynamic load. Consequently, the main results were first validated and then used for further deep investigations. The numerical results predicted a slightly higher displacement in the horizontal and vertical directions than the 1 g shaking table. The shear stress–shear strain relationship was predicted. Positive frictional resistance for the closed-ended pile was captured during the first 5 s when low values of acceleration were applied and, consequently, the pile resistance decreased and became negative. Internal and external frictional resistance was captured for the open-ended pipe pile. Overall, frictional resistance values were decreased with time until they reached the last time step with a minimum value. As a result, the evaluation of the current study can be used as a guide for analysis and preliminary design in engineering practice.
In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreIn this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin
... Show MoreIn order to study the dynamic response of historical masonry structures, a scaled down brick masonry model constructed in civil engineering department at Baghdad University to simulate a part of a real case study, which is Alkifil historic minaret. Most of the previous researches about masonry structures try to understand the behavior of the masonry under seismic loading by experimental and numerical methods. In this paper, the masonry units (bricks) simulated in scale (S= 1/6) with the exact shape of the prototype bricks. Cementitious tile adhesive was selected to be the mortar for the modeling. The height of the model designed to be 1.5 m with a 0.5 m diameter. Detailed construction steps were presented in this paper. Experts buil
... Show MoreThe biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show MoreIn earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreThe dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo
... Show MoreReducing a structure’s self-weight is the main goal and a major challenge for most civil constructions, especially in tall buildings and earthquake-affected buildings. One of the most adopted techniques to reduce the self-weight of concrete structures is applying voids in certain positions through the structure, just like a voided slab or BubbleDeck slab. This research aims to study, experimentally and theoretically, the structural behavior of BubbleDeck reinforced concrete slabs under the effect of harmonic load. Tow-way BubbleDeck slab of 2500mm×2500m×200mm dimensions and uniformly distributed bubbles of 120mm diameter and 160mm spacing c/c was tested experimentally under the effect of harmonic load. Numerical analysis was als
... Show MoreThe main objective of this study is to develop predictive models using SPSS software (version 18) for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351) gm/cc, at OAC of (4.7) % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods.
A total of (75) specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7) % with an additional asphalt contents of more and less than (0.5) % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical model
... Show MoreThis study was conducted to assess the hydrocarbon degradation abilities of Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae, which isolated from diesel contaminated soil samples. Single strains and mixed bacterial consortia have been investigated their ability to degrade 1.0 % (v/v) of diesel oil in Bushnell- Haas medium as sole.carbon.and.energy.source. At temperature 30∘C, the individual.bacterial.isolates exhibited low growth and low degradation.than did the.mixed. bacterial.culture. After 28 days.of incubation the.combination.of four isolates degraded.an upper limit.of diesel 88.4%. This was. continued.by 85.1% by S. paucimobilis, 84 % by Pentoae sp., 79% by S.aureus, and
... Show MoreBackground: Anastomosis may be done with the help of stapling devices, by using double layered suturing technique or by a single layer technique.
Patients and methods: A prospective study conducted in Baghdad Teaching Hospital, Iraq. A total of sixty- four patients were included in this study. They were divided into two groups; group A, 28 patients, single layer seromuscular continuous anastomosis was done and group B, 36 patients underwent conventional double layered anastomosis.Objective: The aim of the study is to prove that a single layer continuous technique can be constructed in a significantly less time with similar rate of complications compared with two layers technique