The aim of this study is to investigate the role of prodigiosin on P. aeruginosa' s biofilm genes involved in the pathogenicity and persistency of the bacteria; Materials and methods: Gram negative bacterial isolates were taken from burn and wounds specimen obtained from some of Baghdad hospitals. Forty six isolates were identified as Pseudomonas aeruginosa and four isolates as Serratia marcescens by using biochemical tests and VITEK 2 compact system. Susceptibility test was performed for all P. aeruginosa isolates, the results showed that 100% were resistant to Amikacin and 98% were sensitive to Meropenem. Resistant isolates were tested for biofilm formation; the strong and moderate isolates (17) were detected by PCR for AlgD gene presence. From 17 isolates only two had AlgD gene. All serratia isolates were screened for prodigiosin production, which were extracted from the best producer isolate. Minimal inhibitory concentration was assessed for prodigiosin and ciprofloxacin and synergism between them against the two isolates of P. aeruginosa. Results and conclusions: The results showed that the synergistic effect decreased MIC of both prodigiosin and ciprofloxacin by combination, and reduction of biofilm formation was detected. RNA was extracted from the two selected isolates as control in addition to three treatments. The result of quantitative real time PCR showed down regulation in the AlgD gene expression level under some treatments, while there was no gene expression in most treatments with both sub-MICs treatment
AN Adil A, F Basman M, 2009
The current report dealt with the effect of pesticides on the ecosystem through their impact on soil, water, and microorganisms and their impact on human health. As well as this study dealt with the biodegradation process of pesticides and the organisms involved in this process, even some previous studies proved that Bacillus spp. And Pseudomonas sp. Bacteria is the most efficient in the biodegradation of pesticides, at the same time, other previous studies dealt with the environmental factors that affect the biodegradation process of pesticides. It proved that each of the incubation periods, pH, and temperature have different effects on biodegradation. Most of the studies indicated that the best incubation period for biodegradation is 7-8
... Show MoreObjectives This study aimed to compare the clinical effectiveness of four aligning archwires: Superelastic Nickel-Titanium (Superelastic-NiTi), SmartArch, Copper-Nickel-Titanium (Cu-NiTi), and Speed Tubular coaxial-Nickel-Titanium (Tubular coaxial-NiTi), regarding the alignment efficiency, associated perception of pain, and possibility of inducing root resorption.
Materials and Methods This study includes two randomized clinical trials run in parallel. Patients with 5 to 9 mm of mandibular anterior teeth crowding according to Little's irregularity index (LII) who needed fixed orthodontic appliances without extraction were randomly assigned to four groups of
This review discusses the gingival biotypes, their characteristics, analysis based on the measurement of the dentopapillary complex. Also discuss their response to inflammation, surgery, and ridge healing after tooth extraction, their influence in the behavior of the peri-implant tissue
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators.
... Show MoreThe choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To mo
... Show More2929-2933