This study is qualitative, it illustrates H.G. Wells\\'s The Time Machine through the scientific and social framework of the Victorian Era. Wells\\'s portrayal of future societies examines the rapid technological progress and social changes of the 19th century. The analysis scrutinizes the division between the Eloi and the Morlocks, tracing the consequences of social division. To meet the objective of the study, Victorian frame of mind is utilized to examine the class struggle that is symbolized by the Eloi and the Morlocks. The analysis highlights the economic and social effects of industrialization and how Wells examines the capitalist system and its impact on human relationships and class division. The study also utilizes concepts from Darwinism to explore how Wells responded to these scientific ideas in his novel. By examining Wells within this historical and intellectual context, the study helps reveal his skepticism towards progress and his prophecy of human degeneration caused by uncontrolled technological and social evolution. The study also considers the narrative structure, characters, and symbolic elements in the novel to uncover Wells\\'s broader criticism of the nature of human progress and the modern age.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreAs they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreIn this paper, the reliability and scheduling of maintenance of some medical devices were estimated by one variable, the time variable (failure times) on the assumption that the time variable for all devices has the same distribution as (Weibull distribution.
The method of estimating the distribution parameters for each device was the OLS method.
The main objective of this research is to determine the optimal time for preventive maintenance of medical devices. Two methods were adopted to estimate the optimal time of preventive maintenance. The first method depends on the maintenance schedule by relying on information on the cost of maintenance and the cost of stopping work and acc
... Show MoreThere are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st
... Show MoreEmbracing digital technological advancements in media and communication has led government entities to adopt communication practices fully aligned with the digital and networked system in government communication. Traditional media practices within the government environment increasingly rely on the ability to utilize digital tools and systems for content creation, communication, evaluation, and the management of the entire communication process within an electronic and intelligent framework for government services. Naturally, this transformation has caught the attention of communication and public relations researchers worldwide, as the digital and networked aspects of government communication now form an intelle
... Show MoreIn this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving averageâ€. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.
Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreIt aim current researchs֬ to identify the impact of a proposed strategy in accordance with the objectives of science in the achievement and some science processes, where the experimental method was adopted, and define the research community was students second grade averag in Education Bagdad / Rusafa third, research sample intentionally chosen as school Radwan, and (30) students experimental group and (29) of control group, research tools were achievement test and the test of science operations and use the appropriate statistical tools to process information and data, showing results, the experimental group surpassed the control group in the collection and operations science, and light it, the researcher recommended several recommendat
... Show More