Pesticide biodegradation can be accomplished by the technique of bioremediation, which makes use of microorganisms’ ability to degrade pesticide residues. This study aimed to separate and identify imidacloprid-biodegradable from botanical fields soil of greenhouses in the Plant Protection Directorate /Ministry of Agriculture in Baghdad, which has been using imidacloprid pesticides for many years. Using high-performance liquid chromatography, residual imidacloprid concentrations in MSM medium at a concentration of 25 mg/L after 21 days were measured to identify the best degrading bacterial isolates. Isolate No.37 the best bacterial isolate was able to degrade 63% of imidacloprid. was identified as
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show More