Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, coronal plane, and sagittal plane. Three different thresholds, which are based on texture features: mean, energy and entropy, are obtained automatically. This allowed to accurately separating the MRI slice into normal and abnormal one. However, the abnormality detection contained some normal blocks assigned wrongly as abnormal and vice versa. This problem is surmounted by applying the fine-tuning mechanism. Finally, the MRI slice abnormality detection is achieved by selecting the abnormal slices along its tumour region (Region of Interest-ROI).
Abstract: Recently, there is increasing interest in using mode-division multipelexing (MDM) technique to enhace data rate transmission over multimode fibers. In this technique, each fiber mode is treated as a separate optical carrier to transfer its own data. This paper presents a broadband, compact, and low loss three-mode (de)multiplexer designed for C+L band using subwavelength grating (SWG) technology and built-in silicon-on-insulator SOI platform. SWG offers refractive index engineering for wider operating bandwidth and compact devices compared to conventional ones. The designed (de)multiplex deals with three modes (TE0, TE1, and TE2) and has a loss > -1 dB and crosstalk < −15 dB, and its operation c
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreBackground: The ideal force-delivery system must: provide optimal tooth moving forces that elicit the desired effects, be comfortable and hygienic for the patient, require minimal operator manipulation and patient cooperation and provide rapid tooth movement with minimal mobility during orthodontic therapy, the elastomeric chains have the greatest potential to fulfill these requirements. Materials and Methods: This in vitro study was designed to determine the effect of three different mechanisms for canine retraction : (6-3 , 6-5-3 and chain loop ) on the load relaxation behavior of three types of elastomeric chains : (maximum clear , maximum silver and extreme silver) from the same company (Ortho Technology company) with two different bran
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
Survivin, a member of inhibitor of apoptosis family is increasingly used as a target for cancer therapy design because it has a key role in cell growth and inhibition of cell apoptosis. Also it can be used as a biomarker for targeting cancer because it is found in almost all cancer but not normal cells. Our strategy was to design (computationally) a molecule to be used as survivin inhibitor. This molecule was named lead10 and was used furthermore to find (virtually) existing drugs with a good survivin inhibition activity.
Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the ef
... Show MoreThis paper aims to evaluate the reliability analysis for steel beam which represented by the probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First Order Reliability Method (FORM) will be used to achieve this issue. These methods need two samples for each behavior that want to study; the first sample for resistance (carrying capacity R), and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method has been adopted to generate these samples dependent on the randomness and uncertainties in variables. The variables that consider are beam cross-section dimensions, material property, beam length, yield stress, and applied loads. Matlab software has be
... Show MoreWithin this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show More