Preferred Language
Articles
/
hRemPo8BVTCNdQwCO2WT
A New Abnormality Detection Approach for T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes
...Show More Authors

Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, coronal plane, and sagittal plane. Three different thresholds, which are based on texture features: mean, energy and entropy, are obtained automatically. This allowed to accurately separating the MRI slice into normal and abnormal one. However, the abnormality detection contained some normal blocks assigned wrongly as abnormal and vice versa. This problem is surmounted by applying the fine-tuning mechanism. Finally, the MRI slice abnormality detection is achieved by selecting the abnormal slices along its tumour region (Region of Interest-ROI).

Publication Date
Sat Sep 01 2018
Journal Name
Polyhedron
Novel dichloro (bis {2-[1-(4-methylphenyl)-1H-1, 2, 3-triazol-4-yl-κN3] pyridine-κN}) metal (II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)
...Show More Authors

Preview PDF