Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, coronal plane, and sagittal plane. Three different thresholds, which are based on texture features: mean, energy and entropy, are obtained automatically. This allowed to accurately separating the MRI slice into normal and abnormal one. However, the abnormality detection contained some normal blocks assigned wrongly as abnormal and vice versa. This problem is surmounted by applying the fine-tuning mechanism. Finally, the MRI slice abnormality detection is achieved by selecting the abnormal slices along its tumour region (Region of Interest-ROI).
Cosmetic products must be safe for use by consumers , It is also regulated and required the legislation of countries all over the world . In this study out of 80 cosmetic products analyzed and 32.5% were found to be contaminated .Products such as mascara, lip pencil and eye pencil were analyzed . The contaminants including bacteria such as Staphylococcus aureus , Staphylocoocus epidermidis , Pseudomonas aeruginosa , Escherichia coli and Klebsiella pneumonia which were ranging in number from (103-104 ) C.F.U. /ml and fungi such as Penicillium spp. , <
... Show MoreCorrelation and path coefficient analysis were worked out for ten morphological traits in 30 three-way crosses of maize. Phenotypic and genotypic correlation analysis indicated that ear length; row numbers per ear, grain numbers per row, leaf area and leaves numbers had a positive significant correlation with grain yield per plant. Further partitioning of correlation coefficients into direct and indirect effects showed that traits days to silking, row numbers per row and leaves numbers had a positive direct effect on grain yield per plant. The traits ear length, grain numbers per row and leaf area had a maximum total effect on grain yield. Furthermore, PCA analysis has gave interested
Layer by layer development two features of pulsed laser deposition PLD, with a high kinetic energy and sharp instantaneous deposition rating. Layered films of polymer/metal/ceramic nanocomposites consisting of polystyrene PS(as substrate) , tin Sn and cadmium oxide CdO were deposited by PLD. Structure for layered samples were measured by XRD X ray diffraction, there were appearance of peaks which reflected to formation of new compounds result of reaction between layers. Particles size was calculated using two methods and it give nanoscale. Microstrain was also calculated and exhibited high value (0.01) for sample p/m.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More