Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.
Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreAbstract
This paper discusses the essence of the developmental process in auditing firms and offices at the world today. This process is focused on how to adopt the audit concepts which is based on Information and Communication Technology (ICT), including the Continuous Auditing (CA) in particular. The purpose of this paper is to design a practical model for the adoption of CA and its requirements according to the Technology Acceptance Model (TAM). This model will serve as a road map for manage the change and development in the Iraqi auditing firms and offices. The paper uses the analytical approach in reaching to the target results. We design the logical and systematic relations between the nine variable
... Show MoreThe research aims to show the relationship between artificial intelligence in accounting education and its role in achieving sustainable development goals in the Kingdom of Bahrain. The research dealt with the role of artificial intelligence applications in accounting education at the University of Applied Sciences as a model for Bahraini universities to achieve sustainable development goals. The application of artificial intelligence in accounting education achieves seven of the seventeen sustainable development goals. It also concludes that there is an artificial intelligence infrastructure in the Kingdom of Bahrain, as it occupies a leading regional position in digital transformation, as Bahrain ranks first in the Arab world i
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, a
... Show MoreThe Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MoreThe banking sector has a significant impact on the economic growth of the country, and the importance of this sector must assess its financial performance from time to time, to measure the situation related to money for each bank and how to put the supervision of the efficiency of the full. The research aims at evaluating the financial performance according to the elements of the CAMELS model, which including capital adequacy, asset quality, management efficiency, profitability, liquidity, and market risk sensitivity. The research included the study of Al-Mansour Investment Bank during the period from 2014 to 2018. The base capital ratio was used to total assets to measure capital adequacy The proportion of investments to total a
... Show MoreThe developed financial system is essential for increasing economic growth and poverty reduction in the world. The financial development helps in poverty reduction indirectly via intermediate channel which is the economic growth. The financial development enhancing economic development through mobilization of savings and channel them to the most efficient uses with higher economic and social returns. In addition, the economic growth reduces the poverty through two channels. The first is direct by increasing the introduction factors held by poor and improve the situations into the sectors and areas where the poor live. The second is indirect through redistribution the realized incomes from the economic growth as well as the realiz
... Show MoreThis research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show More