Preferred Language
Articles
/
hRdsaY8BVTCNdQwCAneP
Using Phragmites australis(Iraqi plant) to remove the Lead (II) Ions form Aqueous solution.
...Show More Authors

Lead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic processwhile (?G)values were negative which means that adsorption of lead ions was a spontaneous process and the decrease in (?G) with temperature increasing revealed that lead ions adsorption on (P.a) became favorable with temperature increasing

Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
The Potential Efficiency of Bacillus subtilis AIK to Remove Nickel from Aqueous Solutions
...Show More Authors

In this study a new strain of mesophilic Bacillus subtilis AIK, recorded for the first time in Iraq, was used to remove nickel (Ni) from aqueous solutions. The factors that affect bioremediation include temperature, pH value and metal concentrations. The results showed that the highest removal efficiency (R%) was 54, 52 and 48% at 25⁰C and pH of 5, 7 and 9, and with 10 ppm Ni concentration respectively. Whereas the highest R% recorded was 47, 45 and 52% at 30⁰C and of pH 5, 7, and 9 with 1 ppm Ni concentration respectively. On the other hand, the highest R% at 40⁰C was 49, 46, 42 % at pH 5, 7 and 9, with 5, 10 and 10 ppm Ni concentrations respectively. The results also showed that the optimum pH value for Ni removal at bot

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Green Synthesis of Copper Nanoparticles Using Tea Leaves Extract to Remove Ciprofloxacin (CIP) from Aqueous Media
...Show More Authors

     In the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM),  blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depe

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Thermodynamic and Kinetic Study of the Adsorption of Pb (II) from Aqueous Solution Using Bentonite and Activated Carbon
...Show More Authors

The adsorption of Pb(II) ions onto bentonite and activated carbon was investigated. The effects of pH, initial adsorbent dosage, contact time and temperature were studied in batch experiments. The maximum adsorption capacities for bentonite and activated carbon were 0.0364 and 0.015 mg/mg, respectively. Thermodynamic parameters such as Gibbs free energy change, Enthalpy change and Entropy change have been calculated. These thermodynamic parameters indicated that the adsorption process was thermodynamically spontaneous under natural conditions and the adsorption was endothermic in nature. Experimental data were also tested in terms of adsorption kinetics, the results showed that the adsorption processes followed well pseudo second- order

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Lettuce Leaves as Biosorbent Material to Remove Heavy Metal Ions from Industerial Wastewater
...Show More Authors

The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Pomegranate Peels as Biosorbent Material to Remove Heavy Metal Ions from Industerial Wastewater
...Show More Authors

Pomegranate peels were used to remove zinc, chromium and nickel from industrial wastewater. Three forms of these peels (fresh, dried small pieces and powder) were tested under some environmental factors such as pH, temperature and contact time.
The obtained results showed that these peels are capable of removing zinc, chromium and nickel ions at significant capacities. The powder of the peels had the highest capability in bioremoving all zinc, chromium and nickel ions while dried peels had the lowest capacity again for all metals under test. However, the highest capacities were found in a sequence of chromium, nickel and zinc. Furthermore, all these data were significantly (LSD peel forms = 2.761 mg/l, LSD metal ions = 1.756 mg/l) var

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Lead, Cadmium, and Mercury Ions Using Biosorption
...Show More Authors

The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Desalination And Water Treatment
Removal of lead, cadmium, and mercury ions using biosorption
...Show More Authors

View Publication
Scopus (32)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Electrosorption of cadmium ions from the aqueous solution by a MnO2/carbon fiber composite electrode
...Show More Authors

The nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Biosorption of Safranin-O from Aqueous Solution by Nile Rose Plant (Eichhornia crassipes)
...Show More Authors

In this work Aquatic plant (Nile rose) was used to study adsorption of industrial dye (safranin-O from aqueous solution within several operation conditions. The dried leaves of Nile rose plant were used as adsorbents safranin-O from aqueous solution after different activations such as wet and dry enhancements. The data show increasing in dye solution removal percentage for both activation methods of the adsorbent and also dye removal percentage that was obtained by using adsorbent without any treatment with the progress contact time. The dye removal percentages at equilibrium time 40 minutes were 88.7% at non-activation, 92.3% at thermal activation, and 98.3% at acidic activation. The samples adsorbents before and after adsorption which wer

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2011
Journal Name
Chinese Chemical Letters
Extraction of cobalt(II) from aqueous solution by N,N′-carbonyl difatty amides
...Show More Authors

The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal

... Show More
View Publication
Scopus (24)
Crossref (12)
Scopus Clarivate Crossref