Medulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep
... Show MoreBackground: Osteoporosis is denoted by low bone mass and microarchitectural breakdown of bone tissue, directing to increased fracture risk and bone fragility. Fractures may lead to a decreased quality of life and increased medical costs. Thus, osteoporosis is widely considered a significant health concern.
Objective. This study aimed to compare quantitative computed tomography (QCT) and dual-energy X-Ray absorptiometry (DXA) to detect osteoporosis in postmenopausal women.
Subjects and Methods. We measured spinal volumetric bone mineral density (BMD) with QCT and areal spinal and hip BMD with DXA in 164 postmenopausal women. We calculated the osteo
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts. Objectives: To evaluate the diagnostic efficacy of Automated breast ultrasound and compare
... Show MoreBackground: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts.
Objectives:<
... Show MoreInvestigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Abstract
The study seeks to use one of the techniques (Data mining) a (Logic regression) on the inherited risk through the use of style financial ratios technical analysis and then apply for financial fraud indicators,Since higher scandals exposed companies and the failure of the audit process has shocked the community and affected the integrity of the auditor and the reason is financial fraud practiced by the companies and not to the discovery of the fraud by the auditor, and this fraud involves intentional act aimed to achieve personal and harm the interests of to others, and doing (administration, staff) we can say that all frauds carried out through the presence of the motives and factors that help th
... Show MoreThis study successfully synthesized high-performance photodetectors based on Ag-WO3 core–shell heterostructures using a simple and economical two-step pulsed laser ablation in water method and has investigated the electrical characteristics of the Ag@WO3 nanocomposite heterojunction. The Hall effect tests indicate that the synthesized Ag@WO3 exhibits n-type conduction with a Hall mobility of 1.25 × 103 cm2V-1S-1. Dark current–voltage properties indicated that the created heterojunctions displayed rectification capabilities, with the highest rectification factor of around 1.71 seen at a 5 V bias. A photodetector’s responsivity reveals the existence of two response peaks, which are situated in the ultraviolet and visible region. The ph
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More