Abstract
Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has
... Show MoreAbstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show MoreThe gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.
The sen
... Show MoreThe purpose of this study is to demonstrate a simple high sensitivity vapor sensor for propanol ((CH3)2CHOH). A free space gap was employed in two arms of a Mach-Zehnder interferometer to serve as the sensing mechanism by adding propanol volume (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase reference with a physical spacing of (0.5, 1, 1.5, and 2) mm. The propagation constant of transmitted light in the Mach-Zehnder interferometer’s gap changes due to the small variation in the refractive index inside sensing arm that will further shift the optical phase of the signal. Experimental results indicated that the highest sensitivity of propanol was about 0.0275 nm/ml in different liquid volume while highest phase shift was 0.182×103 i
... Show MoreThe aim of this research is to construct an educational program in light of the theory of behavioral cognitive and its impact on the development of the efficient response to students affected by crises (centers of your right to education). To achieve the objectives of the research, two scales were developed by the researcher in addition to two equivalent hypotheses were formulated. The scale contains (26) items divided into five fields; for its validity and reliability were derived based on the measure of efficient response, an educational program based on the theory of behavioral cognition. The test and the educational program were applied to a sample of (60) students from the centers of your right to education, divided into experimenta
... Show MoreThe heat transfer and flow resistance characteristics for air flow cross over circular finned tube heat exchanger has been studied numerically and experimentally. The purpose of the study was to improve the heat transfer characteristics of an annular finned-tube heat exchanger for better performance. The study has concentrated on the effect of the number of perforations and perforations shapes on the heat transfer and pressure drop across a staggered finned tube heat exchanger. The Numerical part of present study has been performed using ANSYS Fluent 14.5 using SST Turbulent model, while the experimental study consist from a test rig with different models of heat exchangers and all required measurement devices were build
... Show MoreThe purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or
... Show MoreThe concept of intertextuality was one of the problems that occupied the attention of critics and critics in targeting the structure of textual intertextuality between texts and their overlap in the process of producing meaning. Until intertextuality became a stable term and it can be monitored in the structure of the theatrical text and determining the mechanisms of this intertextuality between texts through fields and classifications agreed upon by the most important critics who wrote and considered intertextuality. Perhaps our previous research (the approach of exposure in the epistemological hallway to intertextuality) was an attempt to interview a terminology, which the researcher intended to monitor, through the mechanisms of inter
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show More