It is suitable to use precast steel-concrete composite beams to quickly assemble a bridge or a building, particularly in isolated regions where cast-in-situ concrete is not a practical option. If steel-concrete composite beams are designed to allow demountability, they can also be extremely useful in the aftermath of natural disasters, such as earthquakes or flooding, to replace damaged infrastructure. Furthermore, rapid replacement of slabs is extremely beneficial in case of severe deterioration due to long-term stressors such as fatigue or corrosion. The only way to rapidly assemble and disassemble a steel-concrete composite structure is to use demountable shear connectors to connect/disconnect the steel beams to/from the concrete slab. In an attempt to respond to this demand, recent research developed a removable Friction-Based Shear Connector (FBSC), which eliminates slippage in the steelconcrete interface at SLS (i.e. it offers full-interaction). This paper describes the experimental program that assessed the flexural behaviour of a 9.0 m precast steel-concrete composite beam equipped with FBSCs. The design of the composite beam was based on a 32% degree of partial shear connection, i.e. considerably below the minimum degree specified in Eurocode 4. The paper gives a detailed account of the test results that clearly show that the composite beam with the FBSCs is effective and has properties that match design needs for both SLS and ULS verifications
The researcher aims to Diagnose the reality of research variables, strategic leadership and decision support systems, and their impact on crisis management in the General Company for Steel Industries because of their important role in preventing crises and reducing their occurrence for the research company in particular and other companies in general affiliated with the Ministry of Industry and Minerals, as well as clarifying theoretical concepts of research variables As it included the answer to questions related to the research problem, including (Is there an impact of the strategic leadership in managing crises if decision support systems are used), and the researcher adopted the descriptive and analytical approach in its comp
... Show MoreThe research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.
The impregnation method is used in test sample preparation, using molding by pressure presses.
All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.
The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad
... Show MoreThis paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreThe studies on unbonded post-tensioned concrete members strengthened with Carbon Fiber Reinforced Polymers (CFRPs) are limited and the effect of strengthening on the strain of unbonded pre-stressed steel is not well characterized. Estimating the flexural capacity of unbound post-tensioned members using the design methodology specified in the design guidelines for FRP strengthening techniques of bonded post-tensioned members does not provide a reliable evaluation. This study investigates the behavior of unbonded post-tensioned concrete members with partial strand damage (14.3% and 28.6% damage) and strengthened with CFRP laminates using a near-surface mounted technique with and without U-wrap anchorages. The experimental results show
... Show MoreReinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
Objective: To suggest a weighted measure to diagnose the reasons for the low student success ratios in mathematics concerning the third grade of intermediate schools in light of components educational system represented by: [Students, Teachers, Curriculum, and Environmental reasons (others reasons)] assuming differentiated and interrelated components, Also the effectiveness forming of these components according to the gender variable. Methods: Data collection tools were prepared by constructing two questionnaires for each of (Students and Teachers), which included a number of items that involved some domains for studied components of educational system, which demonstrated a high level of validity and reliability in the pilot study, in addi
... Show MoreThis paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show More