Preferred Language
Articles
/
hRb3BIcBVTCNdQwCuy3S
Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
...Show More Authors

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Geological Journal
Multiple and Coherent Noise Removal from X-Profile 2D Seismic Data of Southern Iraq Using Normal Move Out-Frequency Wavenumber Technique
...Show More Authors

Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Outdoor Scene Classification Using Multiple SVM
...Show More Authors

This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the fir

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Detecting Outliers In Multiple Linear Regression
...Show More Authors

It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases :  first, in real data; and secondly,  after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for  comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Medical Journal Of Babylon
Plasma Sclerostin Level in Multiple Myeloma
...Show More Authors
Background:

Multiple myeloma (MM) is a heterogenous plasma cell malignancy with various complications. Sclerostin is a Wingless-type (Wnt) inhibitor specifically expressed by osteocytes; it acts as a negative regulator of bone formation.

Objectives:

To assess plasma sclerostin level in MM patients and find its correlations with clinical and laboratory data, including osteolytic bone disease and international staging system (ISS).

Materials and Methods:

This cr

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
Assessment of Thyroid Functions in Multiple Sclerosis Patients Treated with Disease Modifying Therapies: Thyroid Functions in Multiple Sclerosis
...Show More Authors

Background:

Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.

Objective:

The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.

Materials and Methods:

A retro prospective study

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Radioelectronics And Communications Systems
BER performance enhancement for secure wireless communication systems based on DCSK-MIMO techniques under Rayleigh fading channel
...Show More Authors

There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Farmacia
CORRELATION BETWEEN INTEGRIN ALPHA-4 GENE POLYMORPHISMS AND FAILURE TO RESPOND TO NATALIZUMAB THERAPY IN IRAQI MULTIPLE SCLEROSIS PATIENTS
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
PDF Comparison based on Various FSO Channel Models under Different Atmospheric Turbulence
...Show More Authors

Recently, wireless communication environments with high speeds and low complexity have become increasingly essential. Free-space optics (FSO) has emerged as a promising solution for providing direct connections between devices in such high-spectrum wireless setups. However, FSO communications are susceptible to weather-induced signal fluctuations, leading to fading and signal weakness at the receiver. To mitigate the effects of these challenges, several mathematical models have been proposed to describe the transition from weak to strong atmospheric turbulence, including Rayleigh, lognormal, Málaga, Nakagami-m, K-distribution, Weibull, Negative-Exponential, Inverse-Gaussian, G-G, and Fisher-Snedecor F distributions. This paper extensive

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Water Movement through Soil under Drip Irrigation using Different Hydraulic Soil Models
...Show More Authors

Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (4)
Crossref