The main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainability of the project. Several approaches are presented in literatures to determine incremental and acceleration recovery and areas for infill drilling. However, the majority of these methods require huge and expensive data; and very time-consuming simulation studies. In this study, two qualitative techniques are proposed for the estimation of incremental and accelerated recovery based upon readily available production data. In the first technique, acceleration and incremental recovery, and thus infill drilling, are predicted from the trend of the cumulative production (Gp) versus square root time function. This approach is more applicable for tight formations considering the long period of transient linear flow. The second technique is based on multi-well Blasingame type curves analysis. This technique appears to best be applied when the production of parent wells reaches the boundary dominated flow (BDF) region before the production start of the successive infill wells. These techniques are important in field development planning as the flow regimes in tight formations change gradually from transient flow (early times) to BDF (late times) as the production continues. Despite different approaches/methods, the field case studies demonstrate that the accurate framework for strategic well planning including prediction of optimum well location is very critical, especially for the realization of the commercial benefit (i.e., increasing and accelerating of reserve or assets) from infilled drilling campaign. Also, the proposed framework and findings of this study provide new insight into infilled drilling campaigns including the importance of better evaluation of infill drilling performance in tight formations, which eventually assist on informed decisions process regarding future development plans.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreTreatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo
This study aims to show the effectiveness of immobilization of Chlorella green algae biomass in the form of bead for the removal of lead ions from synthetic polluted water at various operational parameters such as pH (2–6), biosorbent dosage (0.5–20 g/L) and initial concentration (10–100 mg/L). More than 90 % removal efficiency was achieved. FTIR and SEM-EDX analysis of the biosorbent before and after sorption show differences in the functional groups on the adsorbent surface. Langmuir and Freundlich equilibrium isotherm, pseudo-first-order and pseudo-second-order kinetic models were applied to the experimental and results and show good conformity with Langmuir isotherm model and pseudo-second-order kinetic model with c
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreThe performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreBackground: Cardiovascular disease (CVD) is the number one cause of death worldwide. Objective: To determine of coronary care unit nurses' knowledge regarding patient rehabilitation after myocardial infarction. Methodology: A cross- sectional study was designed in the Cardiac Care Unit of Al-Diwaniyah Teaching Hospital and the Specialized Center for Cardiac Surgery and Catheterization for the period from (November 7, 2022) to (May 12, 2023). A non-probability (purposive) sample consisting of (75 nurses) working in the above-mentioned study site. To determination of coronary care unit Nurses' knowledge regarding patient rehabilitation after myocardial infarction, the researcher used a tool that consists of two parts: The first part:
... Show MoreThe problem of the research lies in the lack of standard levels for modern administration as a guide for evaluating weaknesses and strengths as well as finding solutions. The aim of the research lies in identifying standard levels for modern administration in Iraqi central Olympic committee and international federations. The subjects were (24) Olympic committee' federations. All procedures were standardized to fit our modern administration work. The data was collected and treated using proper statistical operations. The researcher concluded standard levels for modern administration in international federation of the Iraqi Olympic committee, in addition to that he concluded that most administrations levels ranged within four levels (good, fa
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show More