Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressure gradient and clay volume, which were also established first, data such as gamma ray, density, resistivity, and sonic log data are also required. A key consideration in the design of certain wells is the forecasting of fracture pressure for wells drilled in the southern Iraqi oilfield of Buzurgan. The pressure abnormality is found in MA, MB21, MC1 and MC2 units by depending on pore pressures calculated from resistivity log. In these units, depths and its equivalent normal and abnormal pressure are detected for all sex selected wells; BUCS-47, BUCS-48, BUCS-49, BUCN-43, BUCN-51 and BBCN-52. For MA, MB21, MC1, and MC2 units, the highest difference in pore pressure values are 1698 psi @ 3750 m (BUCN-51), 3420 psi @ 3900 m (BUCN-51), 788 psi @ 3980 m (BUCS-49), and 5705 psi @ 4020 m (BUCN-52). On other hands, MB11 and MB12 units have normal pressure trend in all studied wells. Finally, the results show that the highest pore and fracture pressure values is existed in North dome, in comparison with that obtained in south dome of Mishrif reservoir at Buzurgan oilfield.
A novel technique for nanoparticles with a chemical method and impact for resistance bacteria methicillin-resistant Staphylococcus aureus (MRSA), UV-visible analysis confirmed the by Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray (EDX), Scanning electron microscope (SEM) and X-ray diffraction pattern estimation antimicrobial excellent antibacterial activity against MRSA (with zone of inhibition of 11 ± 02 mm , 9 ± 01 mm,8 ± 03 mm and 7.5 ± 02 mm and 6.5 ± 02 mm) at different concentrations (0.5 ,0.25, 0.125, 0.0625, 0.03125) mg/ml while good activity was 16 ± 03 mm at 17 ± 02 mm zone at 0.25, 0.125 mg/mL, respectively. The increase in microorganism resistance to antibiotics a couple of have caused
... Show MoreBACKGROUND: Many genetic factors are known to be related to osteoporosis, and currently the role of the glucagon-like peptide-1 receptor (GLP-1R) gene in bone health has been studied intensively. Some variation of this gene, such as rs1042044 and rs6458093, are known to be linked to metabolic diseases and lower bone mineral density, however their specific contribution to osteoporosis remains largely unexplored. Therefore, this study was conducted to investigate the combined genotypic effect of rs1042044 and rs6458093 as a genetic risk factor for osteoporosis in postmenopausal Iraqi women.METHODS: Blood samples from 75 osteoporosis patients and 75 healthy controls, aged 45-85, were collected. DNA was extracted, and a region of GLP-1R
... Show MoreThe enhancement of the thermal and thermo-hydraulic performance of a semi-circular solar air collector (SCSAC) is numerically investigated using porous semi-circular obstacles made of metal foam with and without longitudinal porous Y-shaped fins. Two 10 and 40 PPI porous material samples are examined. Three-dimensional models are built to simulate the performance of SCSAC: model (I) with clear air passage; model (II) with only metal foam obstacles, and model (III) with metal foam obstacles as well as porous Y-fins. COMSOL Multiphysics software version 6.2 based on finite element methodology is employed. A conjugate heat transfer with a (k-ε) turbulence model is selected to simulate both heat transfer and fluid flow across the entir
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe