Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressure gradient and clay volume, which were also established first, data such as gamma ray, density, resistivity, and sonic log data are also required. A key consideration in the design of certain wells is the forecasting of fracture pressure for wells drilled in the southern Iraqi oilfield of Buzurgan. The pressure abnormality is found in MA, MB21, MC1 and MC2 units by depending on pore pressures calculated from resistivity log. In these units, depths and its equivalent normal and abnormal pressure are detected for all sex selected wells; BUCS-47, BUCS-48, BUCS-49, BUCN-43, BUCN-51 and BBCN-52. For MA, MB21, MC1, and MC2 units, the highest difference in pore pressure values are 1698 psi @ 3750 m (BUCN-51), 3420 psi @ 3900 m (BUCN-51), 788 psi @ 3980 m (BUCS-49), and 5705 psi @ 4020 m (BUCN-52). On other hands, MB11 and MB12 units have normal pressure trend in all studied wells. Finally, the results show that the highest pore and fracture pressure values is existed in North dome, in comparison with that obtained in south dome of Mishrif reservoir at Buzurgan oilfield.
<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreWe studied the effect of Ca- doping on the properties of Bi-based superconductors by
adding differ ent amounts of CaO
to the Bi
2
Sr2La2-xCaxCu3O10+δ
compound. consequently, we
obtained three samples A,B and C with x=0.0, 0.4 and 0.8 respectively. The usual solid-state
reaction method has been applied under optimum conditions. The x-ray diffraction analy sis
showed that the samples A and B have tetragonal structures conversely the sample C has an
orthorhombic structure. In addition XRD analysis show that decreasing the c-axis lattice
constant and thus decreasing the ratio c/a for samples A,B and C resp ectively. The X-ray
florescence proved that the compositions of samples A,B and C with the ra
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreCorrelation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.
In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –
... Show More