In low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is, 1, 2, 3, 4, 5, 6, and 7, are implemented to increase the hourly yield of solar still (HYSS) of the double-slope solar still hybrid with rubber scrapers (DSSSHS) in areas at low latitudes and develop an accurate model for forecasting the HYSS. The proposed model is developed by determining the best values of the constant factors that are associated with NSM, and the optimal values of exponent (n) and the unknown constant (C) for the Nusselt number expression (Nu). These variables are used in formulating the models for estimating HYSS. The particle swarm optimization (PSO) algorithm is used to solve the optimization problem, thereby determining the optimal yields. Water that condensed and accumulated inside the condensing glass cover of the DSSSHS is collected by increasing NSM. This process increases in the specific productivity of DSSSHS and the accuracy of the HYSS prediction model. Results show that the proposed model can consistently and accurately estimate HYSS. Based on the relative root mean square error (RRMSE), the proposed model PSO–HYSS attained a minimum value (2.81), whereas the validation models attained Dunkle’s (78.68) and Kumar and Tiwari’s (141.37).
This study deals with free convection heat transfer for the outer surface of two
cylinders of the shape of (Triangular & Rectangular fined cylinders with 8-fins),
putted into two different spaces; small one with dimension of (Length=1.2m,
height=1m, width=0.9m) and large one with dimension of (Length=3.6m, height =3m,
width=2.7m). The experimental work was conducted with air as a heat transport
medium. These cylinders were fixed at different slope angles (0o, 30o, 60o and 90o)
.The heat fluxes were (279, 1012, 1958, 3005, 4419) W/m2, where heat transferred by
convection and radiation. In large space, the results show that the heat transfer from
the triangular finned cylinder is maximum at a slope angle equals
True random number generators are essential components for communications to be conconfidentially secured. In this paper a new method is proposed to generate random sequences of numbers based on the difference of the arrival times of photons detected in a coincidence window between two single-photon counting modules
In the current research, the work concentrated on studying the effect of curvature of solar parabolic trough solar collector on wind loading coefficients and dynamic response of solar collector. The response of collector to the aerodynamic loading was estimated numerically and experimentally. The curvature of most public parabolic trough solar collectors was investigated and compared. The dynamic response of solar collector due to wind loading was investigated by using numerical solution of fluid-structure interaction concept. The experimental work was done to verify the numerical results and shows good agreement with numerical results. The numerical results were obtained by using finite element software package (ANSYS 14). It was found
... Show MoreThe experiment was conducted using Potato( Solanum tuberosum L.) at the eastern Radwaniyah at private field during fall season 2020/2021 and spring 2021 to study the effect of nitrogen levels to 350, 275, 200 kg N h-1 ( N1, N2, N3) and phosphorous to 100, 180, 360 kg P2O5 h-1 ( P1, P2, P3) and potassium to 100, 200, 300 kg K2O h-1 ( K1, K2, K3) to vegetative growth and yield of industrial potato, The seeds of the hybrid potato Sinora, Class A, were planted in the fall season on 15/9/2020 and Elite in the spring season on 31/1/2021. The experimental fertilizers were added in four batches and in proportions according to the stages of plant age, Factorial experiment with RCBD using three replications. The results showed that changing t
... Show MoreSolar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
A simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
The aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show More