In low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is, 1, 2, 3, 4, 5, 6, and 7, are implemented to increase the hourly yield of solar still (HYSS) of the double-slope solar still hybrid with rubber scrapers (DSSSHS) in areas at low latitudes and develop an accurate model for forecasting the HYSS. The proposed model is developed by determining the best values of the constant factors that are associated with NSM, and the optimal values of exponent (n) and the unknown constant (C) for the Nusselt number expression (Nu). These variables are used in formulating the models for estimating HYSS. The particle swarm optimization (PSO) algorithm is used to solve the optimization problem, thereby determining the optimal yields. Water that condensed and accumulated inside the condensing glass cover of the DSSSHS is collected by increasing NSM. This process increases in the specific productivity of DSSSHS and the accuracy of the HYSS prediction model. Results show that the proposed model can consistently and accurately estimate HYSS. Based on the relative root mean square error (RRMSE), the proposed model PSO–HYSS attained a minimum value (2.81), whereas the validation models attained Dunkle’s (78.68) and Kumar and Tiwari’s (141.37).
Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char
... Show MoreSilicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their
<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show MoreThe present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show More