Wind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under different working conditions. Furthermore, the effect of the design factors was investigated such as the number and size of the blades on the behavior and performance of VAWT. It was assumed that the vertical wind blade works in different sites of Iraq. QBlade software (Version 8) was used to achieve the calculations and optimization processes to obtain the optimal design of vertical axis wind turbines that is suitable for the promising sites. The results proved that accurate results can be obtained by using QBlade software.
The significant shift in the Fine Arts, who led the avant-garde movements and creative which appeared in the modern, specifically in the mid-nineteenth century and early twentieth century era path, embodied in a clear show of new aesthetic value rejects traditional methods put in shape and color qualities She described the movements subjectivity or no formal, was intended to determine the direct function of expression and speech language in the visual arts away from the representation and simulation of reality was accompanied by the appearance of those fine movements directed towards a global approach to design carries features and clear in its organizations formalism of the most important move away from the symmetry and the adoption of
... Show MoreThis paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
... Show MoreEmpirical research in the disciplines of art and design has started to escalate and gather consideration within the academic community over the past few decades. However, still, graphic design tends to be a topic extremely under-researched by scholarly persons. Profound research in the field of graphic design extends far beyond the works produced by the designer himself (Khoury, 2009, p.844). In order to develop a clear insight, one needs to delve deep into the subcategories that the diverse field of graphic design is comprised of, including illustration, typography, interaction design, branding and even the impact of notable, eminent institutes from around the world that have taken the budding artists for quite a long time (Walke
... Show MoreThis research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 – 2.75) GHz,Step size (1 MHz), Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc
The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD) , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider), voltage controlled oscillator , loop filter & reference oscillator. The single chip
... Show MoreAmong the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreIn our world, technological development has become inherent in all walks of life and is characterized by its speed in performance and uses. This development required the emergence of new technologies that represent a future revolution for a fourth industrial revolution in various fields, which contributed to finding many alternatives and innovative technical solutions that shortened time and space in terms of making Machines are smarter, more accurate, and faster in accomplishing the tasks intended for them, and we find the emergence of what is called artificial intelligence (artificial intelligence), which is the technology of the future, which is one of the most important outputs of the fourth industrial revolution, and artificial inte
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show More