The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
BACKGROUND: Diabetes Mellitus is a complex chronic illness that has increased significantly around the world and is expected to affect 628 million in 2045. Undiagnosed type 2 diabetes may affect 24% - 62% of the people with diabetes; while the prevalence of prediabetes is estimated to be 470 million cases by 2030. AIM OF STUDY: To find the percentage of undiagnosed diabetes and prediabetes in a slice of people aged ≥ 45years, and relate it with age, gender, central obesity, hypertension, and family history of diabetes. METHODS: A cross sectional study that included 712 healthy individuals living in Baghdad who accepted to take part in this study and fulfilling the inclusion and exclusion criteria.
... Show MoreDrones play a vital role in the fundamental aspects of Industry 4.0 by converting conventional warehouses into intelligent ones, particularly in the realm of barcode scanning. Various potential issues frequently arise during barcode scanning by drones, specifically when the drone camera has difficulty obtaining distinct images due to certain factors, such as distance, capturing the image whilst flying, noise in the environment and different barcode dimensions. In addressing these challenges, this study proposes an approach that combines a proportional–integral–derivative (PID) controller with image processing techniques. The PID controller is responsible for continuously monitoring the camera’s input, detecting the difference
... Show MoreThis research discussed and analyzed the formulation of a strategy to manage tax compliance risks, as an applied research in the General commission for Taxes. The questionnaire was used as a research tool to identify the factors that stimulate or retard the research sample from being compliant. The K-means clustering method was also used to enable the classification of the research sample's views into four behaviors, some of these views pose tax-compliance risks. The research concluded that risk management is a continuous process and that all departments of the General commission for Taxes are responsible for its implementation to enable them to deal with the behavior of the taxpayer towards tax compliance. And it recommended
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi
... Show MoreWater supply networks are marred by serious risks of imperceptible pipeline leakage, posing sustainability and performance threats. This article highlights the use of vibratory signal features to get around the drawbacks of traditional methods in a highly detailed framework for leak detection based on CatBoost. demonstrated excellent diagnostic performance and carried out a thorough test performance evaluation on five leakage configurations . The expected system achieved an accuracy of 98.1% (variance (well within x/3% of expected):, beating traditional competitors such as Random Forest (97.3%) and Support Vector Machine (93.8%). For example, the area under the receiver-operating characteristic curve was 0.995, in
... Show MorePurpose - This study relies on the descriptive and analytical approach through collecting and analyzing the necessary data, as this approach focuses on polling the opinions of the research sample and its directions, and aims to develop a model that studies the relationship between knowledge creation and organizational ambidexterity in Iraqi private banks and verifying its validity experimentally.
Design / Methodology / Introduction - A survey was conducted through a questionnaire form to collect data from a sample of (113) managers in private commercial banks. In addition, this study used the AMOS program and the ready-to-use statistical program package (SPSS V.25) to test the proposed hypotheses of the t
... Show MoreThis research was carried out to evaluate the activity of crude juice of Olive on some cytogenetic parameters in mice like chromosomal aberration (CAs) and micronuclei formation(MN). The results showed that there was no significant difference between the crude juice (green and black)in CAs(3.77,4.10)and MN(0.25,0.25) in comparison with negative control (3.39,0.22)respectively. The interaction effect between the crude before and after treatment with mutagen MMC showed that the crude is one of the vital inhibitors of the mutagen by its ability in reducing the percentages of both the CAs and MN in bone marrow cells in mice.
The aim of the present research is to identify the test wisdom and the engagement with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and whether students are employee or non-employee. The study also attempts to identify the relationship between the test wisdom and the engagement with learning and psychological tension. The research sample consisted of (75) postgraduate students randomly selected from college of Education. The researcher applied the test–wisdom of (Mellman & Ebel) and the scale of engagement with learning preparation by (Al-zaabi 2013). In addition, the researcher used the list of the psychological stress of (Abu
... Show MoreEnvironmental Tax is deemed as one of the most important tools that can be used to eliminate the problem of oil –based environment pollution resulted out of oil products processes and this has been significantly approved by the experience in those leading countries in the field of protecting the environment against pollution whereas oil-producing countries which are rather awkward in maintaining the environment such as Iraq , suffer from notorious environmental effects pertaining to oil product processes.
The problem of the research is represented the increased and constant rise in the volume of the environmental pollutants resulted from the processes managed by the intern
... Show MoreBackground: Systemic sclerosis (SSc) is a chronic autoimmune illness, which is consider by three main features: Sclerotic changes in the skin and internal organs, Vasculopathy of small blood vessels, Particular autoantibodies (1). The most important autoantibodies appeared significantly in SSc patients are anti-topoisomerase I autoantibody (Scl-70), anti-centromere autoantibody (ACA), and anti-RNA polymerase III autoantibody (RNAP3) (2). Anti-centromere antibodies (ACA) are infrequent in rheumatic conditions and in healthy persons but occur commonly in limited systemic sclerosis (CREST syndrome), and rarely appeared in the diffuse form of systemic sclerosis (3). Anti-Ro/SSA and antiLa/SSB, antibodies directed against Ro/La ribonucleoprot
... Show More