The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
Banks face many of the various risks: which are of dangerous phenomena that cause the state achieved a waste of money and a threat to future development plans to be applied to reach the goals set by: prompting banks and departments to find appropriate solutions and fast: and it was within these solutions rely on Banking risk management and effective role in defining and identifying: measuring and monitoring risk and trying to control and take risks is expected to occur in order to encircle and make it in within acceptable limits: and try to avoid them in the future to reduce the losses that are likely to be exposed to the bank: and it began to emerge and dominate a lot of legislation that seeks to structure the year risk management and t
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreThe Wonderful Wizard of Oz and Peter and Wendy present universal ideas that exist in all times, despite being written in the beginning of the 20th century. Among the most significant ones is the concept of “home”. The article discusses the essentiality of the idea of “home” where the identity of an individual shapes, and where one’s spiritual, psychological, and physical being develop. It also studies the attitudes of each protagonist towards the concept of ‘home’ based on their understanding of it and according to their gender differences. The characters in both stories tread on the path of perplexity between leaving their homes and returning to them. Peter’s world is the world of imagination while Doro
... Show More|
Social networking sites have become very popular since the beginning of the current decade and have become linked to our daily life. We follow the news, Analyses and opinions on the one issue in a way that attracts millions of users and the number grows every secon On Twitter, one of the most important social networking sites, all social groups rushed from the president to the last citizen to open accounts when they found themselves forced to do so . During the recent Gulf crisis, Twitter was buzzing with Twitter, which achieved the largest circulation globally. Instead of serving the issue and directing it to serve the Arab interest, most of the publications were on th |
Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict
This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show More