The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
Record, verify, and showcase your peer review contributions in a format you can include in job and funding applications (without breaking reviewer anonymity).
The best optimum temperature for the isolate was 30○C while the pH for the maximum mineral removal was 6. The best primary mineral removal was 100mg/L, while the maximum removal for all minerals was obtained after 8 hrs, and the maximum removal efficiency was obtained after 24 hrs. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/ minute. Inoculums of 5ml/ 100ml which contained 106 cell/ ml showed maximum removal for the isolate.
In this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreThe study aims to identify the level of cognitive beliefs, as well as to identify the level of self-organized learning strategies among intermediate school students. The study also aims to identify the differences in the level of self-organized learning strategies among intermediate school students in term of gender, branch (scientific, literary). In order to achieve the research objectives, the researcher designed a scale to measure the cognitive beliefs. As for the scale of self-organized learning strategies, the researcher adopted a scale of (Pintrich et al. 1991), which was translated by (Izzat Abdelhamid, 1999) , For self-organized learning strategies, the sample consisted of (400) students from the research population, whic
... Show MoreAn analytical and clinical study has been applied for measure the bioavailability of Zinc in serum of twenty adults healthy volunteers, using flame atomic absorption spectrophotometer (FAAS) at 213.9 nm. The calibration graph is linear in the ranges of 0.25-1.5 μg.mL-1 with correlation coefficient (R) 0.09996)μg.mL1-and molar absorpitivites 22957.76(L.mol1-cm-1.The concentration of Zinc determined in serum of all volunteers before and after administered orally a tablet of 50 mg zinc sulphate, produced by Samara drugs company (SDI). All data were subjected to statistical analysis by calculating accuracy, precision in addition to other parameters. The results indicate that the average maximum concentration (C-max ± SD) of blood zinc was 0.
... Show MoreHypercholesterolemia is a predominant risk factor for atherosclerosis and cardiovascular disease (CVD). The World Health Organization (WHO), ) recommended reducing the intake of cholesterol and saturated fats. On the other hand, limited evidence is available on the benefits of vegetables in the diet to reduce these risk factors, so this research was conducted to compare the hypolipidemic effect between the extracts of two different types of Iraqi peppers, the fruit of the genus Capsicum traditionally known as red pepper extract (RPE), and Piper nigrum as black pepper extract (BPE), respectively, in different parameters and histology of the liver of the experimental animals. The red pepper was extracted by ethyl acetate, while the black pepp
... Show MoreObjective: Synthesized a series of new thiourea (TU) derivatives, tested their antioxidant activity, and investigated their expected biological activity by theoretical study (computational methods). Methods: The derivatives were made using a one-pot reaction with two steps. Initially, succinyl chloride was mixed with KSCN to make succinyl isothiocyanate. Then, primary and secondary amines were used to make TU derivatives. The theoretical studies were done by Swiss ADME and molecular docking via Genetic Optimization of Linkage Docking (GOLD). Then evaluate antioxidant activity using the DPPH scavenging method. Results: FT-IR, 1H NMR, and 13C NMR spectroscopy show the verification of all the prepared derivatives. Compounds (II), (VIII),
... Show MoreThis study was conducted in the field of the Poultry Research Station of the Department of Animal Production / Department of Agricultural Research / Ministry of Agriculture for the period 4/4/2021 to 16/5/2021, in which 300 one-day-old Ross308 chicks that fed on diets used avocado oil and Chia with percentages 0, 0.2, 0.4, 0.6% respectively, and their mixture consisting of 0.0, 0.1, 0.2, 0.3 each of avocado and Chia oil (50% avocado + 50% Chia oil). The experiment included 4 treatments with 3 replicates for each treatment (10 birds/replicates), in order to study the effect of using avocado and chia oil and their mixture in meat broiler diets on some physiological and microbial characteristics of blood plasma. The results indicate a
... Show More