The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
The study sought to identify the attitudes of PhD students towards establishing the field of educational administration. The study followed the descriptive survey method. The questionnaire was used to collect information from the study community consisting of (95) male and female students in the department of educational administration and Planning. Among the most important results about students ’attitudes towards establishing the educational administration field are the following: 1) identifying the necessity of establishing the educational administration field. 2) Encouraging students to attend seminars and scientific conferences in Islamic rooting. 3) there are no statistically significant differences in the attitudes of doctoral s
... Show MoreThe aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show MoreRadiation treatment has long been the conventional approach for treating nasopharyngeal cancer (NPC) tumors due to its anatomic features, biological characteristics, and radiosensitivity. The most common treatment for nasopharyngeal carcinoma is radiotherapy. This study aimed to assess the better quality of radiotherapy treatment techniques using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The VMAT and IMRT are comparative techniques. Forty patients with nasopharyngeal carcinoma and forwarded for radiotherapy were treated with both advanced techniques, IMRT and VMAT, using eclipse software from Varian. The x-ray energy was set at 6 MV. The total prescribed dose was 70 Gy. The results show that the
... Show MoreIn oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening
... Show More