The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
The performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreThe problem of the research is focused on importance limited of Iraq industrial companies in application of scientific measurements of supply chains performance, The research sought to achieve a group of goals, the most important are , identifying the strengths and weaknesses in the reality of supply chain in General Company for Cotton Industries, The data and information required are gathered from the dependence company, records through the field observations and personal interviews, the research used some quantitative indicators to measure of supply chain performance, The research reached to many conclusions , the most outstanding among them is the existence of a strong inverse correlatio
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show MorePetrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreAutomatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreGeologic modeling is the art of constructing a structural and stratigraphic model of a reservoir from analyses and interpretations of seismic data, log data, core data, etc. [1].
A static reservoir model typically involves four main stages, these stages are Structural modeling, Stratigraphic modeling, Lithological modeling and Petrophysical modeling [2].
Ismail field is exploration structure, located in the north Iraq, about 55 km north-west of Kirkuk city, to the north-west of the Bai Hassan field, the distance between the Bai Hassan field and Ismael field is about one kilometer [3].
Tertiary period reservoir sequences (Main Limestone), which comprise many economica
... Show More