The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
In the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreThe Albian Carbonate-clastic succession in the present study is represented by the Mauddud and Nahr Umr formations were deposited during the Albian stage within the Wasia Group More than 200 thin sections of cores and cuttings in addition to well logs data for Nahr Umr and Mauddud formations from 4 boreholes within two oil fields (Ba-4, Ba-8, Ns-2 and Ns-4) were used to interpret the different associations facies as well as the facies architectures to describe the sedimentary framework of the basin and development the petrophysical properties. Seven major microfacies were diagnosed in the carbonate succession of the Mauddud Formation, while the Nar Umr Formation includes five lithofacies; their grain types characteristic and deposit
... Show MoreInformation pollution is regarded as a big problem facing journalists working in the editing section, whereby journalistic materials face such pollution through their way across the editing pyramid. This research is an attempt to define the concept of journalistic information pollution, and what are the causes and sources of this pollution. The research applied the descriptive research method to achieve its objectives. A questionnaire was used to collect data. The findings indicate that journalists are aware of the existence of information pollution in journalism, and this pollution has its causes and resources.
Background; paraphilias were studied in the sex
clinic, at Al-Rashad teaching mental hospital, in the
years 2009-2010, a subject never touched before in the
field of psychiatry in Iraq.
Aims of the study :
1-to identify the prevalence of types and number of
paraphilias in those patients.
2-to study the relationship of paraphilias with
sociodemographic factors of the patients.
Patients and methods; using the diagnostic criteria of
DSM IV TR, 52 patients from the outpatient sex clinic
at Al-Rashad mental hospital, collected and studied (41
males and 11 females).
Results; the ratio of men to women was 3.7 : 1, the
majority of our sample was in the age range of 21-30
years (36.35%), with a limited
ract
This reaserch seeks To answer Wondering :(Is there a possibility employ strategic agility In companies sample Serving in Iraq ?)
This reaserch aims: explore Strategic Agility rely upon Dimensions that interact with each other to form the intcllectual frame Strategic Agility, These dimensions are: (Clarity of vision, Selected
... Show MoreDBNRSK Sayed, Journal of Strategic Research in Social Science (JoSReSS), 2020
The percentage of fatty acids, quantity of tocopherols, tocotrienols, carotens and physiochemical characteristics of crude red palm oil have been evaluated, in addition to specific chemical detection of active compounds unsaponifiable matters. Results of Gas Liquid Chromatography showed:- The major fatty acids in red palm oil is palmitic (44.36%) then oleic (39.65%), linolenic (10.55%), stearic (3.56%), myristic (1.22%), arachdonic (0.24%) and palmotic (0.19%). Red palm oil contains ? – ?- ?- ? – Tocopherols with concentration 258 , 121 , 259, 109 m/kg oil , ? – ?- ?- ? – Tocotrienol with concentration 462.77 , 571.03, 619.18, 509.07 m/kg oil respectively. Total tocopherols & tocotrienols 2909.05 m/kg oil and
... Show MoreBackground: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, i
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show More