The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
The research aims to apply one of the techniques of management accounting, which is the Quality Function Deployment(QFD) on the Pepsi product in Baghdad Soft Drinks Company and to determine the technical requirements objectively that have been applied in practice in Baghdad Soft Drinks Company / a private shareholding company, as it focuses on meeting the quality requirements and achieving positive quality to provide a product It meets the requirements of current and future customers, hence the importance of research that indicates that the Quality Function Deployment(QFD) is a useful tool to develop the requirements of new products, being a design process driven by customers through their voices, and thus contribute to achieve a competi
... Show MoreIn this study, a bioadhesive dosage form of eoconazole nitrate for vaginal delivery was designed using a combination of bioadhesive polymers: Carbopol 941 p and sodium carboxymethylcellulose or methylcellulose in different ratios. The bioadhesive strength was evaluated by measuring the force required to detach the tablet from sheep vaginal mucosal membrane. It was found that the bioadhesive force was directly proportional to Carbopol 941 p content in the different formulae. The formulae were tested for their swelling behavior using agar gel plate method. The results showed that formulae containing a combination of Carbopol 941 p and sodium carboxymethylcellulose had greater swelling index
... Show MoreAim: The present study aims to improve the poor water solubility of zaltoprofen which is a non-steroidal anti-inflammatory drug (NSAIDs) with a potent analgesic effect using solid dispersion then formulate it as a hollow type suppository to be more convenient for geriatric patients. Materials and Method: Zaltoprofen solid dispersions were prepared by solvent evaporation technique in different zaltoprofen: Soluplus® ratios. Results: Among the formulations tested, zaltoprofen solid dispersion preparation using 1:5 (zaltoprofen: Soluplus®) ratio showed the highest solubility and selected for further investigation. Solid dispersion characterization was evaluated by differential scanning calorimetry (DSC), X-ray diffraction study (XRD) and Fou
... Show MoreThe Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was u
... Show MoreBackground: Abdominoplasty is one of the commonest surgical procedures that performed for those patients who had skin laxity, strive and muscle rectur diastasis. Combined using of liposuction and abdominoplasty it can give better result than traditional abdominoplasty with fear complications. Patient and Method: A total number of 25 female patients with age ranging between 27-55 years were underwent lipoabdominoplasty. With extensive liposuction of abdominal wall and selective undermining together with muscle plication. All of our patients had body mass index more than 30. Patients satisfaction and complication were documented postoperatively. Result: All of our patients had no Major complications and the postoperative period passed unevent
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show More