Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.
Pyogenic granuloma is one of the inflammatory hyperplasia seen in the oral cavity. The
present study included 10 patients with pyogenic granuloma, involving 4 males and 6 females with 1:1.5
male to female ratio. Patient ages ranged from 5 to 85 years (mean, 30 years) and half of the lesions had
pedunculated base, with surface ulceration in 10% of cases. Treatment consisted of resection, using 810
nm diode lasers. Eight patients were anesthetized during the surgical operation by local infiltration of
anesthesia. Only three patients reported mild post-operative pain within the first 24 hours of the healing
period. During the surgical operation there was no significant bleeding so clear surgical field. There was
no blee
Pyogenic granuloma is one of the inflammatory hyperplasia seen in the oral cavity. The
present study included 10 patients with pyogenic granuloma, involving 4 males and 6 females with 1:1.5
male to female ratio. Patient ages ranged from 5 to 85 years (mean, 30 years) and half of the lesions had
pedunculated base, with surface ulceration in 10% of cases. Treatment consisted of resection, using 810
nm diode lasers. Eight patients were anesthetized during the surgical operation by local infiltration of
anesthesia. Only three patients reported mild post-operative pain within the first 24 hours of the healing
period. During the surgical operation there was no significant bleeding so clear surgical field. There was
no blee
Verrucae vulgares are commonly encountered. The present work is designed in an attempt to build a systematic procedure for treating warts by carbon dioxide laser regarding dose parameters, application parameters and laser safety.
Patients and Methods: The study done in the department of dermatology in Al-Najaf Teaching Hospital in Najaf, Iraq. Forty-two patients completed the study and follow up period for 3 months. Recalcitrant and extensive warts were selected to enter the study. Carbon dioxide laser in a continuous mode, in non-contact application, with 1 mm spot size was used. The patients were divided into two groups. The first group of patients consisted of 60 lesions divided to 6 equal groups, in whom we use different outputs a
Background: Acne is a common disorder experienced by adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications of high gravity. Fractional resurfacing employs a unique mechanism of action that repairs a fraction of skin at a time. The untreated healthy skin remains intact and actually aids the repair process, promoting rapid healing with only a day or two of downtime. Aims: This study, was designed to evaluate the safety and effectiveness of fractional photothermolysis (fractionated Er: YAG laser 2940nm) in treating atrophic acne scars. Methods: 7 females and 3 males with moderate to severe atrophic acne scarring were enrolled in this study that attained private clinic for Derm
... Show MoreThe present study includes a theoretical treatment to derive the general equations of pumping threshold power ( ), laser output power (Pout), and laser device efficiency (ƞ) of the element-doped thin-disk laser (Yb3+) with a quasi-three-level pumping scheme in the continuous wave mode at a temperature of (299K°). In this study, the host crystals (YAG) were selected as typical examples of this laser design in a Gaussian transverse mode. The numerical solution of these equations was made using Matlab software by selecting the basic parameters from the recently published scientific articles for the laser design of these crystal hosts. According to this simulation, this article studied the effect o
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreLaser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show MoreIn this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.