Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.
This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreIn this paper, an experimental study of the thermal performance for hybrid solar air conditioning system was carried out, to investigate system suitability for the hot climate in Iraq. The system consists of vapor compression unit combined with evacuated tube solar collector and liquid storage tank. A three-way valve was installed after the compressor to control the direction flow of the refrigerant, either to the storage tank or directly to the condenser. The performance parameters were collected by data logger to display and record in the computer by using LabVIEW software. The results show that the average coefficient of performance of hybrid solar air conditioning system (R=1) was about 2.42 to 2.77 and the average p
... Show MoreAn experimental study was conducted to determine the performance of a solar electric refrigeration system. The system contained flat photovoltaic solar panel which absorbs the solar energy and convert it to electrical energy, used to run the refrigeration cycle. Two refrigeration cycles with electrical solar panel were used over a period of 12 months, the first one with classical parts known in refrigeration cycle, while the second one introduced heat exchanger which improves the coefficient of performance by saving the consumed energy. The coefficient of performance of these refrigeration cycles with compressor efficiency 85% are 2.102 and 2.57 respectively. The overall efficiency of the two systems are 18.9% and 23.13%.
In this paper, 3D simulation of the global coronal magnetic field, which use observed line of sight component of the photosphere magnetic field from (MDI/SOHO) was carried out using potential field model. The obtained results, improved the theoretical models of the coronal magnetic field, which represent a suitable lower boundary conditions (Bx, By, Bz) at the base of the linear force-free and nonlinear force free models, provides a less computationally expensive method than other models. Generally, very high speed computer and special configuration is needed to solve such problem as well as the problem of viewing the streamline of the magnetic field. For high accuracy special mathematical treatment was adopted to solve the computation comp
... Show MoreThe solar photocatalytic degradation of diuron, which is one of the herbicides, has been studied by a solar pilot plant in heterogeneous solar photocatalysis with titanium dioxide. The pilot plant was made up of compound parabolic collectors specially designed for solar photocatalytic applications. The influence of different variables such as, H2O2 initial concentration, TiO2 initial concentration, and diuron initial concentration with their relationship to the degradation efficiency were studied. Hydrogen peroxide (H2O2) found to increase the rate of diuron degradation. The best removal efficiency of heterogeneous solar photocatalytic TiO2 system was found to be 46.65 % and for heterogeneous solar photocatalytic TiO2/ H2O2 system was fo
... Show MoreBackground: Dental implant considers a unique treatment option for the replacement of missing dentition. The new trend of implants is looking for materials which accelerate bone formation in bone implant interface and enhance osseointegration to provide immediate loading directly after placement and decrease the time period which is disturbs patients and uncomfortable. The aim of the study was to evaluate the effect of nano zirconium oxide (ZrO2) and nano hydroxyapatite (Hap) mixture coating of screw shaped commercially pure titanium (cpTi) implants on bond strength at the bone implant interface with torque removal test and histological analysis in comparison with non coated implants. Materials and methods: Forty screws were machined from c
... Show More