Preferred Language
Articles
/
hBf_T48BVTCNdQwCAmv0
Energy Absorption Evaluation of CFRP-Strengthened Two-Spans Reinforced Concrete Beams under Pure Torsion
...Show More Authors

For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC beams subjected to pure torsion. The experimental program comprises the investigation of two groups; the first group comprises eight un-strengthened beam specimens, while the second group consists of eight strengthened beam specimens tested under torsional forces. The energy absorption capacity measured from the area under the curve of torque-angle of twist for tested beams. Two parameters were studied, the influence of concrete compressive strength and the angle of a twist. Experimental results indicated that all beams wrapped with CFRP sheet display superior torsional energy absorption capacity compared to the control specimens. The energy absorption may consider as a safety index for the torsional capacity of two-span RC beams under service loadings. Therefore, it is possible to avoid structural as well as material damages by understanding the concept of energy absorption that is one of the important experimental findings presented in this study.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Power Generation from Utilizing Thermal Energy of Hazardous Waste Incinerators
...Show More Authors

A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Enhancing the Performance of Piezoelectric Energy Harvesters Using Permanent Magnets
...Show More Authors

A cantilevered piezoelectric beam with a tip mass at its free end is a common energy harvester configuration. This paper introduces a new principle of designing such a harvester which increases the generated voltage without changing the natural frequency of the harvester: The attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the natural frequency. Three setups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle. Theoretical and experimental results show that magnetically stiffe

... Show More
View Publication Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Photoluminescence Spectra From The Direct Energy Gap of a-SiQDs
...Show More Authors

View Publication
Crossref
Publication Date
Thu Apr 09 2020
Journal Name
Optoelectronics And Advanced Materials – Rapid Communications
Facile synthesis of Cu2FeSnSe4 nanoparticles for solar energy water splitting
...Show More Authors

Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.

View Publication Preview PDF
Publication Date
Fri Apr 05 2013
Journal Name
Journal Of Intelligent Material Systems And Structures
Increasing the power of piezoelectric energy harvesters by magnetic stiffening
...Show More Authors

A piezoelectric cantilever beam with a tip mass at its free end is a common energy harvester configuration. This article introduces a new principle of designing such a harvester that increases the generated power without changing the resonance frequency of the harvester: the attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the efficient operation frequency. Five set-ups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle: theoretical and experimental results show that magnetically stiffened harve

... Show More
View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Construction and Operation of Solar Energy Dish for Water Heating
...Show More Authors

Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Bulletin Of Electrical Engineering And Informatics
Improvement of energy consumption in MIMO with cognitive radio networks
...Show More Authors

The employment of cognitive radio (CR) is critical to the successful development of wireless communications. In this field, especially when using the multiple input multiple output (MIMO) antenna technology, energy consumption is critical. If the principal user (PU) is present, developers can utilize the energy detecting approach to tell. The researchers employed two distinct phases to conduct their research: the intense and accurate sensing stages. After the furious sensing step was completed, the PU user was identified as having a maximum or minimal energy channel. There are two situations in which the proposed algorithm's performance is tested: channels for fading AWGN and Rayleigh. When the proposed methods' simulation results a

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Mathematical Modelling Of Engineering Problems
Investigation of Energy Efficient Clustering Algorithms in WSNs: A Review
...Show More Authors

In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime

... Show More
View Publication
Scopus (7)
Scopus Crossref
Publication Date
Wed Aug 28 2019
Journal Name
Journal Of Engineering
Treatment of Simulated Carwash Wastewater by Electrocoagulation with Sonic Energy
...Show More Authors

Oily carwash wastewater is a high organic and chemical wastewater. This paper targeted to investigate a treatment to decrease the water consumption and contaminants in car-washing stations. Electrocoagulation combined with ultrasonic energy (Sono-Electrocoagulation) was suggested so that the carwash wastewater is treated to be reused. The effect of both the voltage and time of treatment on the removal of COD, turbidity, conductivity, and total dissolved solids (TDS) were studied at constant initial pH 7 and electrode distance 2 cm. The results showed the best results of removal COD, turbidity, TDS, and reduce electrical conductivity is when the voltage was 30 V and a treatment time of 90 minutes.

  <

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jul 09 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
ESTIMATION OF WATER POLLUTION AND CULTIVATED PLANTS ON THE DIYALA RIVER WITH HEAVY ELEMENTS DURING THE SUMMER BY FLAME ATOMIC ABSORPTION: ESTIMATION OF WATER POLLUTION AND CULTIVATED PLANTS ON THE DIYALA RIVER WITH HEAVY ELEMENTS DURING THE SUMMER BY FLAME ATOMIC ABSORPTION
...Show More Authors

This study was carried out to measure the percentage of heavy metals pollution in the water of the Diyala river and to measure the percentage of contamination of these elements in the leafy vegetables grown on both sides of the Diyala river, which are irrigated by the contaminated river water (celery, radish, lepidium, green onions, beta vulgaris subsp, and malva). Laboratory analysis was achieved to measure the ratio of heavy element contamination (Pb, Fe, Ni, Cd, Zn and Cr) using flame atomic absorption spectrophotometer during the summer months of July and August for the year 2017. The study showed that the elements of zinc, chromium, nickel and cadmium were high concentrations and exceeded. The maximum concentration of these

... Show More
View Publication Preview PDF