The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other hand . Finally , we discuss an error estimation procedure for the global error, we present a new, carefully designed modification of this error estimate .
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreDrag has long been identified as the main reason for the loss of energy in fluid transmission like pipelines and other similar transportation channels. The main contributor to this drag is the viscosity as well as friction against the pipe walls, which will results in more pumping power consumption.
The aim in this study was first to understand the role of additives in the viscosity reduction and secondly to evaluate the drag reduction efficiency when blending with different solvents.
This research investigated flow increase (%FI) in heavy oil at different flow rates (2 to 10 m3/hr) in two pipes (0.0381 m & 0.0508 m) ID By using different additives (toluene and naphtha) with different concent
... Show MoreIn this paper, new transform with fundamental properties are presented. The new transform has many interesting properties and applications which make it rival to other transforms.
Furthermore, we generalize all existing differentiation, integration, and convolution theorems in the existing literature. New results and new shifting theorems are introduced. Finally, comprehensive list of this transforms of functions will be providing.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a
... Show MoreIn this research, we study the classical continuous Mixed optimal control vector problem dominated by couple nonlinear elliptic PDEs. The existence theorem for the unique state vector solution of the considered couple nonlinear elliptic PDEs for a given continuous classical mixed control vector is stated and proved by applying the Minty-Browder theorem under suitable conditions. Under suitable conditions, the existence theorem of a classical continuous mixed optimal control vector associated with the considered couple nonlinear elliptic PDEs is stated and proved.
This work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control qua
... Show MorePhosphorus (P) is an element that is potatoes require in large amounts. Soil pH is a crucial factor impacting phosphorus availability in potato production. This study was conducted to evaluate the influence of P application rates on the P efficiency for tuber yield, specific gravity, and P uptake. Additionally, the relationship between soil pH and total potato tuber yield was determined. Six rates of P fertilization (0–280 kg P ha−1) were applied at twelve different sites across Northern Maine. Yield parameters were not responsive to P application rates. However, regression analysis showed that soil pH was significantly correlated with total potato tuber yield(R2 = 0.38). Sites with soil pH values < 6 had total tuber yields,
... Show More