Preferred Language
Articles
/
hBeLgJEBVTCNdQwC55Wo
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Phase Fitted And Amplification Fitted Of Runge-Kutta-Fehlberg Method Of Order 4(5) For Solving Oscillatory Problems
...Show More Authors

In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Third Order Differential Subordination for Analytic Functions Involving Convolution Operator
...Show More Authors

       In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.

View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations
...Show More Authors

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (10)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Laplace transform-adomian decomposition approach for solving random partial differential equations
...Show More Authors

Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.

Scopus
Publication Date
Mon Dec 04 2023
Journal Name
Aip Conf. Proc
Double LA-transform and their properties for solving partial differential equations
...Show More Authors

Scopus (6)
Scopus
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref