Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
MWCNTs and hybrid nanocomposite ZnO/Se/MWCNTs have been prepared via Solvothermal technique using Parr reactor at the temperature 180°C and SeCl2 as a catalyst. The obtained MWCNTs and ZnO/Se/MWCNTs are investigated using the FE-SEM, XRD, UV-VIS Spectroscopy and Z-Scan. The novelty of this research is studying the nonlinear optical properties for these prepared materials and the results exhibit that the thickness of the deposited film for hybrid nanocomposite ZnO/Se/MWCNTs is increased, which in turn, increase the nonlinear phase shift of the laser beam compared with the MWCNTs.
The nonlinear refractive index and the nonlinear absorption coefficient of unmodified and functional poly(methyl methacrylate) PMMA films were studied before and after the addition of the filler by the z-scan technique, using a Q-switched Nd:YAG laser at two wavelengths: 532 nm and 1064 nm, and at three input energies (13, 33 and 53) mJ. Both linear and nonlinear refractive indices and absorption coefficients of polymer films were studied by using UV-VIS spectrophotometer. The results show that the creation of functional PMMA from unmodified PMMA will increase the nonlinear optical properties in the functional PMMA/copper matrix more than in the unmodified PMMA/copper matrix. Hence, the functional PMMA appears promising as a useful third
... Show MoreIn this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
In this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
An idiom is a group of words whose meaning put together is different from the meaning of
individual words. English is a rich language when it comes to idioms, they represent variety. For
foreign learners, idioms are problematic because even if they know the meaning of individual
words that compose an idiom the meaning of it might be something completely different.
The present study investigates Iraqi third year college students’ recognition of idioms. To
achieve this, the researchers have conducted a test which comprises three questions. Certain
conclusions are reached here along with some suggestions and recommendations.
Aim The aim of this study is to evaluate the effect of demographic, clinical, and radiographic factors on the duration of surgical extraction of impacted lower third molars. Materials and methods This retrospective study included patients who underwent surgical removal of impacted lower third molars, and the investigated factors were demographic data including age and gender, radiographic data including the impacted tooth angulation and depth of impaction and ramus relation, and clinical data including the state of eruption of the impacted teeth. These factors were evaluated for association with the duration of surgery. Descriptive statistical analysis included percentages and mean ± standard deviation (SD). Student's t-test was used to co
... Show MoreThe aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show More